Quentin BERTRAND - Research
Ph. D. Thesis
Q. Bertrand, Hyperparameter selection for high dimensional sparse learning: application to neuroimaging, slides, recording of the defense
Papers
2024
D. Ferbach, Q. Bertrand, A. J. Bose, G. Gidel Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences, NeurIPS 2024 (with spotlight!), slides
Q. Bertrand, J. Duque, E. Calvano, G. Gidel Q-learners Can Provably Collude in the Iterated Prisoner's Dilemma
Q. Bertrand, A. J. Bose, A. Duplessis, M. Jiralerspong, G. Gidel On the Stability of Iterative Retraining of Generative Models on their own Data, ICLR 2024 (with spotlight!), code, slides, video
2023
J. Ramirez, R. Sukumaran, Q. Bertrand, G. Gidel, Omega: Optimistic EMA Gradients, ICML 2023 LatinX in AI Workshop, code
S. Lachapelle, T. Deleu, D. Mahajan, I. Mitliagkas, Y. Bengio, S. Lacoste-Julien, Q. Bertrand, Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning, ICML 2023
Q. Bertrand, W. M. Czarnecki, G. Gidel On the Limitations of Elo: Real-World Games are Transitive, not Additive, AISTATS 2023
Q. Klopfenstein*, Q. Bertrand*, A. Gramfort, J. Salmon, S. Vaiter, Model identification and local linear convergence of coordinate descent, Optimization Letters
2022
D. Scieur, Q. Bertrand, G. Gidel, F. Pedregosa, The Curse of Unrolling: Rate of Differentiating Through Optimization, NeurIPS 2022
Q. Bertrand, Q. Klopfenstein, P.-A. Bannier, G. Gidel, M. Massias Beyond L1: Faster and Better Sparse Models with skglm, NeurIPS 2022 code, doc
Q. Bertrand*, Q. Klopfenstein*, M. Massias, M. Blondel, S. Vaiter, A. Gramfort, J. Salmon, Implicit differentiation for fast hyperparameter selection in non-smooth convex learning, JMLR, code, doc
2021
P.-A. Bannier, Q. Bertrand, J. Salmon, A. Gramfort, Electromagnetic neural source imaging under sparsity constraints with SURE-based hyperparameter tuning, Workshop medical imaging meets NeurIPS, NeurIPS2021, code
Q. Bertrand, M. Massias, Anderson acceleration of coordinate descent, AISTATS 2021, code, doc
2020
Q. Bertrand*, Q. Klopfenstein*, M. Blondel, S. Vaiter, A. Gramfort, J. Salmon, Implicit differentiation of Lasso-type models for hyperparameter optimization, ICML 2020, proc., code, doc
M. Massias*, Q. Bertrand*, A. Gramfort, J. Salmon, Support recovery and sup-norm convergence rates for sparse pivotal estimation, AISTATS 2020, proc.
2019
Q. Bertrand*, M. Massias*, A. Gramfort, J. Salmon, Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso, NeurIPS 2019, proc., code, doc
Slides
On the Stability of Iterative Retraining of Generative Models on their own Data, video
Hyperparameter selection for high dimensional sparse learning: application to neuroimaging, 28/09/2021, Ph. D. Defense, Paris-Saclay, France.
Anderson acceleration of coordinate descent, 07/06/2021, Journées des statistiques, Nice, France.
Optimization for machine learning, “Hands on”, 04/01/2021, Data Science Summer School of École polytechnique, France.
Implicit differentiation of Lasso-type models for hyperparameter optimization, 09/09/2020, SMAI MODE 2020, France.
Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso, 18/10/2019, GDR MOA 2019, France.
Reviewing service
ICML 2021-2024
ICLR 2021-2024
NeurIPS 2020-2024 (top reviewer in 2021 and 2022)
JMLR 2021-2024
Neuroimage 2019-2021
AISTATS 2021
Electronic Journal of Statistics 2020
IEEE SPL 2020