
Optimization for Machine
Learning “Hands On”

Alexandre Gramfort (Inria)
http://alexandre.gramfort.net/

Quentin Bertrand (Inria)
https://qb3.github.io

1 / 40

http://alexandre.gramfort.net/
https://qb3.github.io

Disclaimer

I 3 hours is too short for a detailed course on optimization
I We will cover only unconstrained problems
I We will not cover non-smooth problems (e.g., Lasso, SVM)
I The objective is to grasp quickly some theoretical aspects . . .
I . . . and to code everything to be able to experiment.

2 / 40

Introduction

Gradient descent

Newton method

Stochastic gradient descent

Coordinate descent

3 / 40

References and useful links

I S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004, pp. xiv+716

I J. Nocedal and S. J. Wright. Numerical optimization.
Second. Springer Series in Operations Research and Financial
Engineering. New York: Springer, 2006

I Cool website for visualization of optimization algorithms:
http://fa.bianp.net/teaching/2018/COMP-652/

3 / 40

http://fa.bianp.net/teaching/2018/COMP-652/

Is this a cat?

Yes

No

4 / 40

Is this a cat?

Yes

4 / 40

Is this a cat?

Yes

x : Input / Feature y : Output / Target

Goal: find mapping h that assigns the ‘correct’ target to each input

h : x ∈ Rp −→ y ∈ R

4 / 40

Empirical Risk Minimization (ERM)

Goal: from examples (x1, y1), . . . , (xn, yn) learn a function
h : Rp → R such that

h(xn+1) ' yn+1

Ideally, for a given loss function L :

h∗ ∈ arg min
h∈H

E[L(h(x), y)]︸ ︷︷ ︸
Expected risk

In practice:

h∗ ∈ arg min
h∈H

1
n

n∑
i

L(h(xi), yi)︸ ︷︷ ︸
Empirical risk

5 / 40

Empirical Risk Minimization (ERM)

Goal: from examples (x1, y1), . . . , (xn, yn) learn a function
h : Rp → R such that

h(xn+1) ' yn+1

Ideally, for a given loss function L :

h∗ ∈ arg min
h∈H

E[L(h(x), y)]︸ ︷︷ ︸
Expected risk

In practice:

h∗ ∈ arg min
h∈H

1
n

n∑
i

L(h(xi), yi)︸ ︷︷ ︸
Empirical risk

5 / 40

Empirical Risk Minimization (ERM)

Goal: from examples (x1, y1), . . . , (xn, yn) learn a function
h : Rp → R such that

h(xn+1) ' yn+1

Ideally, for a given loss function L :

h∗ ∈ arg min
h∈H

E[L(h(x), y)]︸ ︷︷ ︸
Expected risk

In practice:

h∗ ∈ arg min
h∈H

1
n

n∑
i

L(h(xi), yi)︸ ︷︷ ︸
Empirical risk

5 / 40

Examples of ERM in Practice

Let X = [x1, . . . , xn]> ∈ Rn×p (design matrix)

(Regularized) Linear Regression:
w∗ = arg min

w∈Rp

1
2 ‖y −Xw‖

2︸ ︷︷ ︸
`2 Loss

+λ

2 ‖w‖
2

(Regularized) Logistic Regression:

w∗ = arg min
w∈Rp

n∑
i=1

log(1 + exp(−yix>i w))︸ ︷︷ ︸
Logistic Loss

+λ

2 ‖w‖
2

I All of these are convex optimization problems!

6 / 40

Examples of ERM in Practice

Let X = [x1, . . . , xn]> ∈ Rn×p (design matrix)

(Regularized) Linear Regression:
w∗ = arg min

w∈Rp

1
2 ‖y −Xw‖

2︸ ︷︷ ︸
`2 Loss

+λ

2 ‖w‖
2

(Regularized) Logistic Regression:

w∗ = arg min
w∈Rp

n∑
i=1

log(1 + exp(−yix>i w))︸ ︷︷ ︸
Logistic Loss

+λ

2 ‖w‖
2

I All of these are convex optimization problems!

6 / 40

Examples of ERM in Practice

Let X = [x1, . . . , xn]> ∈ Rn×p (design matrix)

(Regularized) Linear Regression:
w∗ = arg min

w∈Rp

1
2 ‖y −Xw‖

2︸ ︷︷ ︸
`2 Loss

+λ

2 ‖w‖
2

(Regularized) Logistic Regression:

w∗ = arg min
w∈Rp

n∑
i=1

log(1 + exp(−yix>i w))︸ ︷︷ ︸
Logistic Loss

+λ

2 ‖w‖
2

I All of these are convex optimization problems!

6 / 40

Gradient

Definition (Gradient)
For f : Rp → R smooth the gradient reads:

∇f(w) =
[
∂f(w)
∂w1

, . . . ,
∂f(w)
∂wp

]>
∈ Rp

Examples
I f(w) = x>w where x ∈ Rp, then ∇f(w) = x

I f(w) = g(x>w) where g : R→ R, then ∇f(w) = g′(x>w)x
I f(w) = w>Aw where A ∈ Rp×p, ∇f(w) = (A+A>)w

7 / 40

Hessian

Definition (Hessian matrix)
For f : Rp → R with smooth gradient the hessian matrix reads:

∇2f(w) =



∂2f(w)
∂w2

1

∂2f(w)
∂w1∂w2

. . . ∂2f(w)
∂w1∂wp

∂2f(w)
∂w2∂w1

∂2f(w)
∂w2

2
. . . ∂2f(w)

∂w2∂wp

...
...

∂2f(w)
∂wp∂w1

∂2f(w)
∂wp∂w2

. . . ∂2f(w)
∂w2

p

 = (∂2
i,jf(w))i,j

Examples
I f(w) = x>w where x ∈ Rp, then ∇2f(w) = 0
I f(w) = w>Aw where A ∈ Rp×p, ∇2f(w) = A+A>

8 / 40

Warm up!

I You have 3 minutes to compute the gradient ∇f and the
Hessian ∇2f of the linear regression function:

f : w 7→ 1
2‖y −Xw‖

2

I Hint:
f(w) = 1

2(y −Xw)>(y −Xw)

= 1
2‖y‖

2 − (X>y)>w + 1
2w
>X>Xw

I Solution:
∇f(w) = X>(Xw − y)
∇2f(w) = X>X

9 / 40

Warm up!

I You have 3 minutes to compute the gradient ∇f and the
Hessian ∇2f of the linear regression function:

f : w 7→ 1
2‖y −Xw‖

2

I Hint:
f(w) = 1

2(y −Xw)>(y −Xw)

= 1
2‖y‖

2 − (X>y)>w + 1
2w
>X>Xw

I Solution:
∇f(w) = X>(Xw − y)
∇2f(w) = X>X

9 / 40

Convexity I

Definition (Convex function)
f : Rp → R is convex if and only if, ∀u, v ∈ Rp, ∀λ ∈ [0, 1]:

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v)

f(u)
f(v)

u v

λf(u) + (1 − λ)f(v)

f(λu + (1 − λ)v)

10 / 40

Convexity II

Proposition (Convex differentiable function / has a gradient)
f : Rp → R is convex if and only if, ∀u, v ∈ Rp:

f(v) ≥ f(u) +∇f(u)>(v − u)

f(u)
f(u) + ∇f(u)⊤(v − u)

11 / 40

Convexity III

Proposition (Convex twice differentiable function)
f : Rp → R is convex if and only if, ∀u ∈ Rp:

∇2f(u) � 0

u < v ⇒ f′ (u) < f′ (v)

u v

12 / 40

Strong Convexity

Definition (Strongly convex function)
f : Rp → R is µ-strongly convex if and only if, ∀u, v ∈ Rp:

f(v) ≥ f(u) +∇f(u)>(v − u) + µ

2 ‖v − u‖
2

f(u) + ∇f(u)⊤(v − u) + μ
2 ∥v − u∥2

f(u)

13 / 40

Smoothness
Definition (L-Smoothness)
A function f : Rp → R is L-smooth if ∇f is L-Lipschitz:

‖∇f(u)−∇f(v)‖ ≤ L ‖u− v‖ , ∀u, v ∈ Rp

in particular this implies
f(v) ≤ f(u) +∇f(u)>(v − u) + L

2 ‖v − u‖
2

Remark: In practice one wants L as small as possible

f(u) + ∇f(u)⊤(v − u) + L
2 ∥v − u∥2

f(u)

14 / 40

L-Smoothness & Strong Convexity & Hessian
Proposition (L-Smoothness twice differentiable function)
f : Rp → R is L-smooth convex if and only if, ∀u ∈ Rp:

∇2f(u) � L Idp

Proposition (Strongly convex twice differentiable function)
f : Rp → R is µ-strongly convex if and only if, ∀u ∈ Rp:

∇2f(u) � µ Idp

f(u) + ∇f(u)⊤(v − u) + L
2 ∥v − u∥2

f(u) + ∇f(u)⊤(v − u) + μ
2 ∥v − u∥2

f(u)

15 / 40

From surrogate minimization to Gradient
Descent (GD)

For f L-smooth Taylor expansion gives:
f(w) ≤ f(wk) +∇f(wk)>(w − wk) + L

2 ‖w − w
k‖2︸ ︷︷ ︸

Surrogate function f̃(w)

Idea: Minimize the surrogate function f̃

f̃ is convex, differentiable, infinite at the infinite (coercive)
⇒ its minimum w∗ is achieved where gradient is 0:

0 = ∇f̃(w∗) = ∇f(wk) + L(w∗ − wk)

Taking wk+1 as the minimizer of f̃ leads to gradient descent:

wk+1 = wk − 1
L
∇f(wk)

16 / 40

From surrogate minimization to Gradient
Descent (GD)

For f L-smooth Taylor expansion gives:
f(w) ≤ f(wk) +∇f(wk)>(w − wk) + L

2 ‖w − w
k‖2︸ ︷︷ ︸

Surrogate function f̃(w)

Idea: Minimize the surrogate function f̃

f̃ is convex, differentiable, infinite at the infinite (coercive)
⇒ its minimum w∗ is achieved where gradient is 0:

0 = ∇f̃(w∗) = ∇f(wk) + L(w∗ − wk)

Taking wk+1 as the minimizer of f̃ leads to gradient descent:

wk+1 = wk − 1
L
∇f(wk)

16 / 40

From surrogate minimization to Gradient
Descent (GD)

For f L-smooth Taylor expansion gives:
f(w) ≤ f(wk) +∇f(wk)>(w − wk) + L

2 ‖w − w
k‖2︸ ︷︷ ︸

Surrogate function f̃(w)

Idea: Minimize the surrogate function f̃

f̃ is convex, differentiable, infinite at the infinite (coercive)
⇒ its minimum w∗ is achieved where gradient is 0:

0 = ∇f̃(w∗) = ∇f(wk) + L(w∗ − wk)

Taking wk+1 as the minimizer of f̃ leads to gradient descent:

wk+1 = wk − 1
L
∇f(wk)

16 / 40

Exercise 1

I Exercise Write the GD algorithm for the linear regression

f : w 7→ 1
2‖y −Xw‖

2

Algorithm: Gradient Descent
init : w0 = 0p, L
for iter = 1, . . . , do

wk+1 = wk − 1
L∇f(wk)

17 / 40

Exercise 1

I Solution Write the GD algorithm for the linear regression

f : w 7→ 1
2‖y −Xw‖

2

Algorithm: Gradient Descent
init : w0 = 0p, L := λmax(X>X) = ‖X‖22
for iter = 1, . . . , do

wk+1 = wk − 1
LX
>(Xwk − y)

17 / 40

Line-search(1)

What to do when a function is smooth, but you do not know the
Lipschitz constant L? Or when L is too conservative?

Gradient descent with variable stepsize:

wk+1 = wk − αk∇f(wk)

where the stepsize αk changes at each iteration and is found by
line-search.

(1)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and
Financial Engineering. New York: Springer, 2006, Chap. 3.

18 / 40

Line-search(1)

What to do when a function is smooth, but you do not know the
Lipschitz constant L? Or when L is too conservative?

Gradient descent with variable stepsize:

wk+1 = wk − αk∇f(wk)

where the stepsize αk changes at each iteration and is found by
line-search.

(1)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and
Financial Engineering. New York: Springer, 2006, Chap. 3.

18 / 40

Hands on 0

→ See notebook: 00-gradient_descent_line_search.ipynb

19 / 40

Gradient descent: theoretical results
Algorithm: GD
init : w0 = 0p, L
for iter = 1, . . . , do

wk+1 = wk − 1
L∇f(wk)

Proposition
If f is µ-strongly convex and L-smooth, then:

‖wk − w∗‖ ≤
(

1− µ

L

)k
‖w0 − w∗‖

One has “linear” (a.k.a. “exponential”) convergence.

Proposition
If f is convex and L-smooth, then:

f(wk)− f(w∗) ≤ 2L
∥∥w0 − w∗

∥∥2

k

One has “sublinear” convergence.
20 / 40

Gradient descent: theoretical results
Algorithm: GD
init : w0 = 0p, L
for iter = 1, . . . , do

wk+1 = wk − 1
L∇f(wk)

Proposition
If f is µ-strongly convex and L-smooth, then:

‖wk − w∗‖ ≤
(

1− µ

L

)k
‖w0 − w∗‖

One has “linear” (a.k.a. “exponential”) convergence.

Proposition
If f is convex and L-smooth, then:

f(wk)− f(w∗) ≤ 2L
∥∥w0 − w∗

∥∥2

k

One has “sublinear” convergence.
20 / 40

Hands on 1

→ See notebook: 01-logistic_gd.ipynb

Remark
I In all the hands on the main algorithm is already implemented
I We propose you to add little modifications
I All the solutions are in the solutions folder
I But do not look at them too quickly . . .

21 / 40

Newton method: intuition

Taylor expansion to the order 2:

f(w) ≈ f(wk) +∇f(wk)>(w − wk) + 1
2(w − wk)>∇2f(wk)(w − wk)︸ ︷︷ ︸

f̃(w)

Idea: Minimize the quadratic approximation f̃ :

0 = ∇f̃(wk+1) = ∇f(wk) +∇2f(wk)(wk+1 − wk)

This leads to the following update for the Newton algorithm:

wk+1 = wk − [∇2f(wk)]−1∇f(wk)

What about convergence guarantees?

22 / 40

Newton method: intuition

Taylor expansion to the order 2:

f(w) ≈ f(wk) +∇f(wk)>(w − wk) + 1
2(w − wk)>∇2f(wk)(w − wk)︸ ︷︷ ︸

f̃(w)

Idea: Minimize the quadratic approximation f̃ :

0 = ∇f̃(wk+1) = ∇f(wk) +∇2f(wk)(wk+1 − wk)

This leads to the following update for the Newton algorithm:

wk+1 = wk − [∇2f(wk)]−1∇f(wk)

What about convergence guarantees?

22 / 40

Newton method: intuition

Taylor expansion to the order 2:

f(w) ≈ f(wk) +∇f(wk)>(w − wk) + 1
2(w − wk)>∇2f(wk)(w − wk)︸ ︷︷ ︸

f̃(w)

Idea: Minimize the quadratic approximation f̃ :

0 = ∇f̃(wk+1) = ∇f(wk) +∇2f(wk)(wk+1 − wk)

This leads to the following update for the Newton algorithm:

wk+1 = wk − [∇2f(wk)]−1∇f(wk)

What about convergence guarantees?

22 / 40

Newton method: intuition

Taylor expansion to the order 2:

f(w) ≈ f(wk) +∇f(wk)>(w − wk) + 1
2(w − wk)>∇2f(wk)(w − wk)︸ ︷︷ ︸

f̃(w)

Idea: Minimize the quadratic approximation f̃ :

0 = ∇f̃(wk+1) = ∇f(wk) +∇2f(wk)(wk+1 − wk)

This leads to the following update for the Newton algorithm:

wk+1 = wk − [∇2f(wk)]−1∇f(wk)

What about convergence guarantees?

22 / 40

Exercise 2

I Exercise Write the Newton algorithm for the linear regression

f : w 7→ 1
2‖y −Xw‖

2

Algorithm: Newton algorithm
init : w0 = 0p
for iter = 1, . . . , do

wk+1 = wk − [∇2f(wk)]−1∇f(wk)

23 / 40

Exercise 2

I Solution Write the Newton algorithm for the linear regression

f : w 7→ 1
2‖y −Xw‖

2

Algorithm: Newton algorithm
init : w0 = 0p
for iter = 1, . . . , do

wk+1 = wk − [X>X]−1X>(Xwk − y)

23 / 40

Exercise 2

I Solution Write the Newton algorithm for the linear regression

f : w 7→ 1
2‖y −Xw‖

2

Algorithm: Newton algorithm
init : w0 = 0p
for iter = 1, . . . , do

wk+1 = wk − [X>X]−1X>(Xwk − y)

Question: Is there an interest of applying Newton method on a
linear regression problem?

23 / 40

Convergence of Newton method
Theorem (Convergence of Newton method)
Suppose that f is twice differentiable, and the Hessian ∇2f(w∗) is
Lipschitz continuous in a neighborhood of a solution w∗ such that
∇f(w∗) = 0 and ∇2f(w∗) � 0.
Then there exists a closed ball B centered on w∗, such that for
every w0 ∈ B, the sequence wk obtained with Newton algorithm
stays in B and converges towards w∗. Furthermore, there is a
constant γ > 0, such that ‖wk+1 − w∗‖ ≤ γ‖wk − w∗‖2.
One has “super linear” convergence.

Drawbacks:
I Convergence of Newton is local (see proof in(2)). The method

may diverge if the initial point is too far from w∗ or if the
Hessian is not positive definite

I One has to solve a linear system at each step! O(p3)
(2)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and

Financial Engineering. New York: Springer, 2006, Thm. 3.5.
24 / 40

Convergence of Newton method
Theorem (Convergence of Newton method)
Suppose that f is twice differentiable, and the Hessian ∇2f(w∗) is
Lipschitz continuous in a neighborhood of a solution w∗ such that
∇f(w∗) = 0 and ∇2f(w∗) � 0.
Then there exists a closed ball B centered on w∗, such that for
every w0 ∈ B, the sequence wk obtained with Newton algorithm
stays in B and converges towards w∗. Furthermore, there is a
constant γ > 0, such that ‖wk+1 − w∗‖ ≤ γ‖wk − w∗‖2.
One has “super linear” convergence.

Drawbacks:
I Convergence of Newton is local (see proof in(2)). The method

may diverge if the initial point is too far from w∗ or if the
Hessian is not positive definite

I One has to solve a linear system at each step! O(p3)
(2)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and

Financial Engineering. New York: Springer, 2006, Thm. 3.5.
24 / 40

From Newton to quasi-Newton
Idea:

I Construct iterative approximations of (the inverse of) the
Hessian

I Combine it with line-search strategies

{
dk = −Bk∇f(wk) find a descent direction
wk+1 = wk + αkdk line-search

I There exists a whole jungle of iterative approximations for the
inverse of the Hessian: Bk+1 = Bk + ∆k (3)

I The one you should know about is BFGS strategy and the
memory efficient L-BFGS(4)

(3)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and
Financial Engineering. New York: Springer, 2006.
(4)J. Nocedal. “Updating quasi-Newton matrices with limited storage”. In: Mathematics of computation 35.151

(1980), pp. 773–782.
25 / 40

From Newton to quasi-Newton
Idea:

I Construct iterative approximations of (the inverse of) the
Hessian

I Combine it with line-search strategies

{
dk = −Bk∇f(wk) find a descent direction
wk+1 = wk + αkdk line-search

I There exists a whole jungle of iterative approximations for the
inverse of the Hessian: Bk+1 = Bk + ∆k (3)

I The one you should know about is BFGS strategy and the
memory efficient L-BFGS(4)

(3)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and
Financial Engineering. New York: Springer, 2006.
(4)J. Nocedal. “Updating quasi-Newton matrices with limited storage”. In: Mathematics of computation 35.151

(1980), pp. 773–782.
25 / 40

From Newton to quasi-Newton
Idea:

I Construct iterative approximations of (the inverse of) the
Hessian

I Combine it with line-search strategies

{
dk = −Bk∇f(wk) find a descent direction
wk+1 = wk + αkdk line-search

I There exists a whole jungle of iterative approximations for the
inverse of the Hessian: Bk+1 = Bk + ∆k (3)

I The one you should know about is BFGS strategy and the
memory efficient L-BFGS(4)

(3)J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in Operations Research and
Financial Engineering. New York: Springer, 2006.
(4)J. Nocedal. “Updating quasi-Newton matrices with limited storage”. In: Mathematics of computation 35.151

(1980), pp. 773–782.
25 / 40

Hands on 2

→ See notebook: 02-logistic_newton.ipynb

Remark
I All the solutions are in the solutions folder . . .

26 / 40

Optimization for ML: finite sum

Optimization in general:
min
x∈H

f(x)

Optimization for Machine Learning (linear or logistic regression):

min
x∈Rp

f(x) :=
n∑
i=1

fi(x)

I Can we take advantage of this finite sum structure?
I In particular when the number of samples n is large?

27 / 40

Optimization for ML: finite sum

Optimization in general:
min
x∈H

f(x)

Optimization for Machine Learning (linear or logistic regression):

min
x∈Rp

f(x) :=
n∑
i=1

fi(x)

I Can we take advantage of this finite sum structure?
I In particular when the number of samples n is large?

27 / 40

Optimization for ML: finite sum

Optimization in general:
min
x∈H

f(x)

Optimization for Machine Learning (linear or logistic regression):

min
x∈Rp

f(x) :=
n∑
i=1

fi(x)

I Can we take advantage of this finite sum structure?
I In particular when the number of samples n is large?

27 / 40

Stochastic Gradient Descent (SGD)

Question: what is the cost per iteration of one update of GD?
I Full gradient methods can be expensive O(np) per iteration!
I Idea: use a single gradient ∇fi(w) instead of full gradient∑n

i ∇fi(w) (n times faster!)

Algorithm: SGD
init : w = 0p, α
for iter = 1, . . . , do

Sample i in 1, . . . , n
// Single gradient ∇fi(w) call

// O(p) per update

w ← w − α∇fi(w)
return w

Algorithm: GD
init : w = 0p, α
for iter = 1, . . . , do

// Full gradient ∇f(w) call

// O(np) per update

w ← w − α∇f(w)
return w

28 / 40

Stochastic Gradient Descent (SGD)

Question: what is the cost per iteration of one update of GD?
I Full gradient methods can be expensive O(np) per iteration!
I Idea: use a single gradient ∇fi(w) instead of full gradient∑n

i ∇fi(w) (n times faster!)

Algorithm: SGD
init : w = 0p, α
for iter = 1, . . . , do

Sample i in 1, . . . , n
// Single gradient ∇fi(w) call

// O(p) per update

w ← w − α∇fi(w)
return w

Algorithm: GD
init : w = 0p, α
for iter = 1, . . . , do

// Full gradient ∇f(w) call

// O(np) per update

w ← w − α∇f(w)
return w

28 / 40

Exercise 3

I Exercise Write the algorithm for the linear regression

f : w 7→
n∑
i=1

1
2(yi − x>i w)2︸ ︷︷ ︸

fi(w)

Algorithm: SGD
init : w = 0p, α
for iter = 1, . . . , do

Sample i in 1, . . . , n
// Single gradient ∇fi(w) call

// O(p) per update

w ← w − α∇fi(w)
return w

Algorithm: GD
init : w = 0p, α
for iter = 1, . . . , do

// Full gradient ∇f(w) call

// O(np) per update

w ← w − α∇f(w)
return w

29 / 40

Exercise 3

I Solution Write the algorithm for the linear regression

f : w 7→
n∑
i=1

1
2(yi − x>i w)2︸ ︷︷ ︸

fi(w)

Algorithm: SGD
init : w = 0p, α
for iter = 1, . . . , do

Sample i in 1, . . . , n
// Single gradient ∇fi(w) call

// O(p) per update

w ← w − α(x>i w − yi)xireturn w

Algorithm: GD
init : w = 0p, α = 1/‖X‖22
for iter = 1, . . . , do

// Full gradient ∇f(w) call

// O(np) per update

w ← w − αX>(Xw − y)
return w

29 / 40

Exercise 3

I Solution Write the algorithm for the linear regression

f : w 7→
n∑
i=1

1
2(yi − x>i w)2︸ ︷︷ ︸

fi(w)

Algorithm: SGD
init : w = 0p, α
for iter = 1, . . . , do

Sample i in 1, . . . , n
// Single gradient ∇fi(w) call

// O(p) per update

w ← w − α(x>i w − yi)xireturn w

Algorithm: GD
init : w = 0p, α = 1/‖X‖22
for iter = 1, . . . , do

// Full gradient ∇f(w) call

// O(np) per update

w ← w − αX>(Xw − y)
return w

Question: how to choose α for the SGD?

29 / 40

SGD with constant stepsize α: theory

Proposition
If f is µ-strongly convex and L-smooth, then:

E(‖wk − w∗‖2) ≤ (1− αµ)k ‖w0 − w∗‖2 + α

µ
C .

Remark
I Constant C depends on the norm for the fi gradients

(bounded gradient hypothesis)
I SGD with constant step size α does not converge
I In ML if the estimation and the approximation are bigger than

the optimization error it’s ok!a

aL. Bottou and O. Bousquet. “The tradeoffs of large scale learning”. In: Advances in neural information
processing systems. 2008, pp. 161–168.

30 / 40

Example of SGD

SGD on a 2D problem
31 / 40

Example of SGD

SGD on a 2D problem
31 / 40

Example of SGD

SGD on a 2D problem
31 / 40

Hands on 3

→ See notebook: 03-stochastic_gradient_descent.ipynb

Remark
I All the solutions are in the solutions folder . . .

32 / 40

(Exact) Coordinate Descent
Goal:

min
w∈Rp

f(w1, . . . , wp)

Idea: solve smaller and simpler problems (one coordinate at a time)

Algorithm: Exact coordinate descent
init : w = 0p
for iter = 1, . . . , do

for j = 1, . . . , p do
// Update only one coef.

wj ← arg minz∈R f(w1, . . . , wj−1, z, wj+1, . . . , wp)
return w

Remark
I The order of cycle through coordinates is arbitrary, can use

any permutation of 1, 2, . . . , p
I We just have to solve 1D optimization problems but a lot of

them...

33 / 40

(Exact) Coordinate Descent
Goal:

min
w∈Rp

f(w1, . . . , wp)

Idea: solve smaller and simpler problems (one coordinate at a time)
Algorithm: Exact coordinate descent
init : w = 0p
for iter = 1, . . . , do

for j = 1, . . . , p do
// Update only one coef.

wj ← arg minz∈R f(w1, . . . , wj−1, z, wj+1, . . . , wp)
return w

Remark
I The order of cycle through coordinates is arbitrary, can use

any permutation of 1, 2, . . . , p
I We just have to solve 1D optimization problems but a lot of

them...

33 / 40

(Exact) Coordinate Descent
Goal:

min
w∈Rp

f(w1, . . . , wp)

Idea: solve smaller and simpler problems (one coordinate at a time)
Algorithm: Exact coordinate descent
init : w = 0p
for iter = 1, . . . , do

for j = 1, . . . , p do
// Update only one coef.

wj ← arg minz∈R f(w1, . . . , wj−1, z, wj+1, . . . , wp)
return w

Remark
I The order of cycle through coordinates is arbitrary, can use

any permutation of 1, 2, . . . , p
I We just have to solve 1D optimization problems but a lot of

them...
33 / 40

(Exact) Coordinate Descent
Goal:

min
w∈Rp

f(w1, . . . , wp)

Idea: solve smaller and simpler problems (one coordinate at a time)
Algorithm: Exact coordinate descent
init : w = 0p
for iter = 1, . . . , do

for j = 1, . . . , p do
// Update only one coef.

wj ← arg minz∈R f(w1, . . . , wj−1, z, wj+1, . . . , wp)
return w

Remark
I The order of cycle through coordinates is arbitrary, can use

any permutation of 1, 2, . . . , p
I We just have to solve 1D optimization problems but a lot of

them...
33 / 40

Example of CD

Coordinate descent on a 2D problem

34 / 40

Coordinate Gradient Descent: algorithm

I Exact minimization can be expensive
I Idea: do a local gradient step instead of exact minimization
I Step-sizes are now given by the coordinate-wise functions

Algorithm: CD
init : w = 0p, L1, . . . , Lp
for iter = 1, . . . , do

for j = 1, . . . , p do
// Update only one coef.

wj ← wj − 1
Lj
∇jf(w)

return w

Algorithm: GD
init : w = 0p, L
for iter = 1, . . . , do

// Update all the coef.

w ← w − 1
L∇f(w)

return w

35 / 40

Exercise 4

I Exercise Write the CD algorithm for the linear regression

f : w 7→ ‖y −Xw‖2

Algorithm: CD
init : w = 0p, L1, . . . , Lp

for iter = 1, . . . , do
for j = 1, . . . , p do

// Update only one coef.

wj ← wj − 1
Lj
∇jf(w)

return w

Algorithm: GD
init : w = 0p, L
for iter = 1, . . . , do

// Full gradient ∇f(w) call

w ← w − 1
L
∇f(w)

return w

36 / 40

Exercise 4

I Solution Write the CD algorithm for the linear regression

f : w 7→ ‖y −Xw‖2

Algorithm: CD
init : w = 0p, Lj = ‖X:j‖2

for iter = 1, . . . , do
for j = 1, . . . , p do

// Update only one coef.

wj ← wj −
X>

:j (Xw−y)
Lj

return w

Algorithm: GD
init : w = 0p, α = 1/‖X‖2

2
for iter = 1, . . . , do

// Full gradient ∇f(w) call

w ← w − αX>(Xw − y)
return w

36 / 40

Exercise 4

I Solution Write the CD algorithm for the linear regression

f : w 7→ ‖y −Xw‖2

Algorithm: CD
init : w = 0p, Lj = ‖X:j‖2

for iter = 1, . . . , do
for j = 1, . . . , p do

// Update only one coef.

wj ← wj −
X>

:j (Xw−y)
Lj

return w

Algorithm: GD
init : w = 0p, α = 1/‖X‖2

2
for iter = 1, . . . , do

// Full gradient ∇f(w) call

w ← w − αX>(Xw − y)
return w

Question What is the cost of one update of CD?

36 / 40

Convergence speed of CD(6)

Assume f is convex; ∇f is Lipschitz continuous

Proposition (Beck and Tetruashvili (2013))

f(wk+1)− f(w∗) ≤ 4Lmax(1 + n3L2
max/L

2
min)R

2(w0)
k + 8/n

where R2(w0) = maxu,v∈V{‖u− v‖ : f(v) ≤ f(u) ≤ f(w0)},
Lmax = maxj Lj and Lmin = minj Lj .

I Worst case complexity rates of CD are bad (n3 complexity)
because it is possible to construct adversarial examples(5)

I Yet CD performs surprisingly well on real-world problems (see
hands on)

I Random coordinate selection has a better average complexity
(5)R. Sun and Y. Ye. “Worst-case complexity of cyclic coordinate descent: O(n2) gap with randomized version”.
In: Mathematical Programming (2019), pp. 1–34.
(6)A. Beck and L. Tetruashvili. “On the convergence of block coordinate type methods”. In: SIAM J. Imaging

Sci. 23.4 (2013), pp. 651–694.
37 / 40

Take a look back before “Hands on 4”

f : w 7→ 1
2‖y −Xw‖

2

Algorithm: GD
init : w = 0p, α = 1/‖X‖2

2
for iter = 1, . . . , do

// Full gradient ∇f(w) call

w ← w − αX>(Xw − y)
return w

Algorithm: SGD
init : w = 0p, α
for iter = 1, . . . , do

Sample i in 1, . . . , n
// Single gradient ∇fi(w) call

w ← w − αX>i: (Xi:w − yi)
return w

Algorithm: CD
init : w = 0p, αj = 1/‖X:j‖2

for iter = 1, . . . , do
Sample j in 1, . . . , p
// Single coordinate update

wj ← wj − αjX
>
:j (Xw − y)

return w

38 / 40

Hands on 4

→ See notebook: 04-coordinate_descent.ipynb

Remark
I All the solutions are in the solutions folder . . .

39 / 40

I Beck, A. and L. Tetruashvili. “On the convergence of block
coordinate type methods”. In: SIAM J. Imaging Sci. 23.4
(2013), pp. 651–694.

I Bottou, L. and O. Bousquet. “The tradeoffs of large scale
learning”. In: Advances in neural information processing
systems. 2008, pp. 161–168.

I Boyd, S. and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2004, pp. xiv+716.

I Nocedal, J. “Updating quasi-Newton matrices with limited
storage”. In: Mathematics of computation 35.151 (1980),
pp. 773–782.

I Nocedal, J. and S. J. Wright. Numerical optimization. Second.
Springer Series in Operations Research and Financial
Engineering. New York: Springer, 2006.

I Sun, R. and Y. Ye. “Worst-case complexity of cyclic coordinate
descent: O(n2) gap with randomized version”. In: Mathematical
Programming (2019), pp. 1–34.

40 / 40

	Introduction
	Gradient descent
	Newton method
	Stochastic gradient descent
	Coordinate descent

