Some Challenges around Retraining Generative Models on Their Own Data

Quentin Bertrand Inria – Université Jean Monnet – QB3.github.io

J. A. Bose A. Duplessis M. Jiralerspong G. Gidel

LAION-5B¹²³

¹C. Schuhmann et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022).

²https://paperswithcode.com/dataset/laion-5b

³A. Birhane, V. U. Prabhu, and E. Kahembwe. "Multimodal datasets: misogyny, pornography, and malignant stereotypes". In: arXiv preprint arXiv:2110.01963 (2021).

Generative Models Today

► Easy access (Midjourney, Stable Diffusion, DALL·E)

Generative Models Today

- Powerful deep generative models
 - \hookrightarrow e.g. Diffusion trained on LAION-5B
- ► Easy access (Midjourney, Stable Diffusion, DALL·E)
- Populates the WEB with synthetically generated images

Generative Models Today

Powerful deep generative models

 \hookrightarrow e.g. Diffusion trained on LAION-5B

► Easy access (Midjourney, Stable Diffusion, DALL·E)

► Populates the WEB with synthetically generated images

Inevitably Train on Synthetic Data

The LAION-5B⁴ dataset already contains synthetically generated images⁵

⁴C. Schuhmann et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022).

⁵S. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: ICLR (2024).

Training Set

Training on Synthetic Data, Good or Bad?

Iterative Retraining is **Bad**

- The Curse of Recursion: Training on Generated Data Makes Models Forget^a
 Self-Consuming Generative Models Go MAD^b
- ▶ When A.I. 's Output Is a Threat to A.I. Itself (N.Y. Times article)

^al. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.L0]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: *ICLR* (2024).

Training on Synthetic Data, Good or Bad? Iterative Retraining is Bad

- The Curse of Recursion: Training on Generated Data Makes Models Forget^a
 Self-Consuming Generative Models Go MAD^b
- ▶ When A.I. 's Output Is a Threat to A.I. Itself (N.Y. Times article)

^aI. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.L0]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: *ICLR* (2024).

Training on Synthetic Data, Good or Bad? Iterative Retraining is Bad

- The Curse of Recursion: Training on Generated Data Makes Models Forget^a
 Self-Consuming Generative Models Go MAD^b
- ▶ When A.I. 's Output Is a Threat to A.I. Itself (N.Y. Times article)

^aI. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.L0]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: *ICLR* (2024).

Will generative models collapse?!

Training on Synthetic Data is Good

- Data augmentation for downstream tasks
 - \hookrightarrow Adversarial training²
 - \hookrightarrow Classification with imbalanced datasets l
 - \hookrightarrow Generative modelling^c

^aZ. Wang et al. "Better diffusion models further improve adversarial training". In: *ICML*. 2023.

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).

^cC. Gulcehre et al. "Reinforced self-training (REST) for language modeling". In: (2023). arXiv: 2308.08998 [cs.CL].

Training on Synthetic Data, Good or Bad? Iterative Retraining is Bad

- The Curse of Recursion: Training on Generated Data Makes Models Forget^a
 Self-Consuming Generative Models Go MAD^b
- ▶ When A.I. 's Output Is a Threat to A.I. Itself (N.Y. Times article)

^aI. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: *ICLR* (2024).

Will generative models collapse?!

Training on Synthetic Data is Good

- Data augmentation for downstream tasks
 - \hookrightarrow Adversarial training^{*a*}
 - \hookrightarrow Classification with imbalanced datasets^b
 - \hookrightarrow Generative modelling^c

^aZ. Wang et al. "Better diffusion models further improve adversarial training". In: *ICML*. 2023.

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: TMLR (2024).

^cC. Gulcehre et al. "Reinforced self-training (REST) for language modeling". In: (2023). arXiv: 2308.08998 [cs.CL].

Setting

Notation

- $\blacktriangleright \hat{p}_{\text{data}}$ Empirical data distribution
 - \hookrightarrow *n* Data points
- $\blacktriangleright p$ Likelihood of the model
 - \hookrightarrow Parametrized by $\theta^n \in \Theta$

Setting

Notation

- $\blacktriangleright \hat{p}_{\text{data}}$ Empirical data distribution
 - \hookrightarrow *n* Data points
- $\blacktriangleright \ p$ Likelihood of the model
 - $\, \hookrightarrow \, \operatorname{\mathsf{Parametrized}} \, \operatorname{\mathsf{by}} \, \theta^n \in \Theta$

$$p_{0} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}}[\log p(x)]$$
$$p_{t+1} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg\,max}} \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p(x)}_{\text{Real data}} + \lambda \cdot \underbrace{\mathbb{E}_{\hat{\mathbf{x}} \sim \hat{p}_{t}} \log p(\hat{\mathbf{x}})}_{\text{Synthetic data}}$$

Setting

Notation

- $\blacktriangleright \hat{p}_{\text{data}}$ Empirical data distribution
 - \hookrightarrow *n* Data points
- $\blacktriangleright \ p$ Likelihood of the model
 - $\, \hookrightarrow \, \operatorname{\mathsf{Parametrized}} \, \operatorname{\mathsf{by}} \, \theta^n \in \Theta$

$$p_{0} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}}[\log p(x)]$$
$$p_{t+1} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg\,max}} \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}}\log p(x)}_{\text{Real data}} + \frac{\lambda}{\sum_{\mathbf{\tilde{x}} \sim \hat{p}_{t}}\log p(\mathbf{\tilde{x}})}_{\text{Synthetic data}}$$

Warm Up: Only Retrain on your Own Data 1/3

Q: What will happen?

Warm Up: Only Retrain on your Own Data 1/3

Q: What will happen?

Warm Up: Only Retrain on your Own Data 2/3

Q: What will happen? A: Mode Collapse

Setup

- \blacktriangleright Data: 8 Gaussians, $x \in \mathbb{R}^2$
- ► Algorithm: Diffusion (DDPM^a)

^aJ. Ho, A. Jain, and P. Abbeel. "Denoising diffusion probabilistic models". In: NeurIPS (2020).

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiased estimator

$$\begin{array}{l} \text{Data:} \ x_j^0 = \mu_0 + \sigma_0 Z_j, \ \text{with} \ Z_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \\ \\ \text{Learning step:} \quad \begin{cases} \mu_{t+1} &= \frac{1}{n} \sum\limits_j \tilde{\mathbf{x}}_j^t \\ \sigma_{t+1}^2 &= \frac{1}{n-1} \sum\limits_j \left(\tilde{\mathbf{x}}_j^t - \mu_{t+1} \right)^2 \\ \\ \text{Sampling step:} \quad & \left\{ \tilde{\mathbf{x}}_j^{t+1} = \mu_{t+1} + \sigma_{t+1} \cdot Z_j^{t+1}, \ \text{with} \ Z_j^{t+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \end{cases} \right.$$

Result

$$\mathbb{E}(\sigma_t) \le \alpha^t \sigma_0 \xrightarrow[t \to +\infty]{} 0, \ 0 \le \alpha < 1$$

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiased estimator

$$\begin{array}{l} \text{Data:} \ x_j^0 = \mu_0 + \sigma_0 Z_j, \ \text{with} \ Z_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \\ \\ \text{Learning step:} \quad \begin{cases} \mu_{t+1} &= \frac{1}{n} \sum\limits_j \tilde{\mathbf{x}}_j^t \\ \sigma_{t+1}^2 &= \frac{1}{n-1} \sum\limits_j \left(\tilde{\mathbf{x}}_j^t - \mu_{t+1} \right)^2 \\ \\ \text{Sampling step:} \quad \left\{ \tilde{\mathbf{x}}_j^{t+1} = \mu_{t+1} + \sigma_{t+1} \cdot Z_j^{t+1}, \ \text{with} \ Z_j^{t+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \end{cases} \right.$$

Result

$$\mathbb{E}(\sigma_t) \le \alpha^t \sigma_0 \xrightarrow[t \to +\infty]{} 0, \ 0 \le \alpha < 1$$

Same type of results holds for a single multidimensional Gaussian

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiased estimator

$$\begin{array}{l} \text{Data:} \ x_j^0 = \mu_0 + \sigma_0 Z_j, \ \text{with} \ Z_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \\ \\ \text{Learning step:} \quad \begin{cases} \mu_{t+1} &= \frac{1}{n} \sum\limits_j \tilde{\mathbf{x}}_j^t \\ \sigma_{t+1}^2 &= \frac{1}{n-1} \sum\limits_j \left(\tilde{\mathbf{x}}_j^t - \mu_{t+1} \right)^2 \\ \\ \text{Sampling step:} \quad \left\{ \tilde{\mathbf{x}}_j^{t+1} = \mu_{t+1} + \sigma_{t+1} \cdot Z_j^{t+1}, \ \text{with} \ Z_j^{t+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \end{cases} \right.$$

Result

$$\mathbb{E}(\sigma_t) \le \alpha^t \sigma_0 \xrightarrow[t \to +\infty]{} 0, \ 0 \le \alpha < 1$$

Same type of results holds for a single multidimensional Gaussian

Iterative Retraining $p_0 \in \arg \max \mathbb{E}_{x \sim p_{data}}[\log p(x)]$ $p \in \mathcal{P}_{\Theta}$ $p_{t+1} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg\,max}} \underbrace{\mathbb{E}_{x \sim p_{\text{data}}} \log p(x)}_{\text{Real data}} + \underbrace{\lambda}_{\mathbf{\tilde{x}} \sim p_t} \log p(\tilde{\mathbf{x}})}_{\text{Synthetic data}} := \mathcal{G}(p_t)$ Idea Fixed-point iteration $p_{t+1} = \mathcal{G}(p_t)$ \triangleright p_{data} is a fixed point of \mathcal{G}

Iterative Retraining $p_{0} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg max}} \mathbb{E}_{x \sim p_{\text{data}}}[\log p(x)]$ $p_{t+1} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg max}} \underbrace{\mathbb{E}_{x \sim p_{\text{data}}} \log p(x)}_{\text{Real data}} + \lambda \cdot \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{t}} \log p(\tilde{\mathbf{x}})}_{\text{Synthetic data}} := \mathcal{G}(p_{t})$ Idea

Fixed-point iteration
$$p_{t+1} = \mathcal{G}(p_t)$$

- $\blacktriangleright \ p_{\rm data}$ is a fixed point of ${\cal G}$
 - \blacktriangleright Study the stability of ${\cal G}$ around $p_{\rm data}$
- Link with performative prediction!

Iterative Retraining $p_{0} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg max}} \mathbb{E}_{x \sim p_{\text{data}}}[\log p(x)]$ $p_{t+1} \in \underset{p \in \mathcal{P}_{\Theta}}{\operatorname{arg max}} \underbrace{\mathbb{E}_{x \sim p_{\text{data}}}\log p(x)}_{\text{Real data}} + \lambda \cdot \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{t}}\log p(\tilde{\mathbf{x}})}_{\text{Synthetic data}} := \mathcal{G}(p_{t})$

Idea

Fixed-point iteration
$$p_{t+1} = \mathcal{G}(p_t)$$

- ▶ p_{data} is a fixed point of \mathcal{G}
 - \blacktriangleright Study the stability of ${\cal G}$ around $p_{\rm data}$
- Link with performative prediction!

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough" $\hookrightarrow \mathcal{W}(p_{\text{data}}, p_{\theta_0}) < \epsilon$

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"

 $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$

Infinite data

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite data

Results

Regularity + good enough model + infinite data

¹Q. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ⁹D. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *NeurIPS* (20

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite data

Results

- ▶ Regularity + good enough model + infinite data
 - $\Rightarrow~$ Stability: if $heta_0$ is close enough to $heta^\star$, then $\| heta_t- heta^\star\| o 0$ linearly ab

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bD. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *NeurIPS*

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite data

Results

- Regularity + good enough model + infinite data
 - \implies Stability: if θ_0 is close enough to θ^\star , then $\|\theta_t \theta^\star\| \to 0$ linearly ab

 \hookrightarrow Interplay between prop. of real data and $\mathcal{W}(p_{ ext{data}},p_{m heta_0})<\epsilon$

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bD. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *NeurIPS* (2024).

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite data

Results

- Regularity + good enough model + infinite data
 - \implies Stability: if θ_0 is close enough to θ^* , then $\|\theta_t \theta^*\| \to 0$ linearly^{*ab*}
 - \hookrightarrow Interplay between prop. of real data and $\mathcal{W}(p_{\rm data},p_{\pmb{\theta}_0})<\epsilon$
 - $\,\hookrightarrow\,$ Finite sample extension $\hat{p}_{ ext{data}}$

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bD. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *NeurIPS* (2024).

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite data

Results

- Regularity + good enough model + infinite data
 - \implies Stability: if θ_0 is close enough to θ^\star , then $\|\theta_t \theta^\star\| \to 0$ linearly ab
 - \hookrightarrow Interplay between prop. of real data and $\mathcal{W}(p_{\rm data},p_{\pmb{\theta}_0})<\epsilon$
 - \hookrightarrow Finite sample extension \hat{p}_{data}

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bD. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *NeurIPS* (2024).

0 retrain. 5 retrain. 10 retrain. 15 retrain. 20 retrain.

14 / 23

Experiments

Self-consuming generative models

▶ No collapse/MADness (if "enough" real data)^{ab}

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bR. Hataya, H. Bao, and HJ. Arai. "Will Large-scale Generative Models Corrupt Future Datasets?" In: *ICCV*. 2023.

Self-consuming generative models

▶ No collapse/MADness (if "enough" real data)^{ab}

No improvements either

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bR. Hataya, H. Bao, and HJ. Arai. "Will Large-scale Generative Models Corrupt Future Datasets?" In: *ICCV*. 2023.

Self-consuming generative models

- ▶ No collapse/MADness (if "enough" real data)^{ab}
- No improvements either

 \hookrightarrow Requires curation/filtering

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bR. Hataya, H. Bao, and HJ. Arai. "Will Large-scale Generative Models Corrupt Future Datasets?" In: *ICCV*. 2023.

Self-consuming generative models

- No collapse/MADness (if "enough" real data)^{ab}
- No improvements either
 - \hookrightarrow Requires curation/filtering

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bR. Hataya, H. Bao, and HJ. Arai. "Will Large-scale Generative Models Corrupt Future Datasets?" In: *ICCV*. 2023.

What if you already retrain on curated/filtered synthetic data?

Self-consuming generative models

- No collapse/MADness (if "enough" real data)^{ab}
- No improvements either
 - \hookrightarrow Requires curation/filtering

^aQ. Bertrand et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: *ICLR* (2024). ^bR. Hataya, H. Bao, and HJ. Arai. "Will Large-scale Generative Models Corrupt Future Datasets?" In: *ICCV*. 2023.

What if you already retrain on curated/filtered synthetic data?

LAION-Aesthetics^a

 ${}^{a} https://github.com/LAION-AI/laion-datasets/blob/main/laion-aesthetic.md$

Filter the LAION-5B dataset^a

 \hookrightarrow Filter: reward model

^aC. Schuhmann et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022). ^bhttps://github.com/LAION-AI/aesthetic-predictor

^cJ. D. Pressman, K. Crowson, and Simulacra Captions Contributors. *Simulacra Aesthetic Captions.* Version 1.0. url https://github.com/JD-P/simulacra-aesthetic-captions. Stability AI, 2022.

LAION-Aesthetics^a

 ${}^{a} https://github.com/LAION-AI/laion-datasets/blob/main/laion-aesthetic.md$

- Filter the LAION-5B dataset^a
 - \hookrightarrow Filter: reward model^b

 \hookrightarrow Trained on synthetic data "Simulacra Aesthetic Captions" dataset^c

^aC. Schuhmann et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022). ^bhttps://github.com/LAION-AI/aesthetic-predictor

^cJ. D. Pressman, K. Crowson, and Simulacra Captions Contributors. *Simulacra Aesthetic Captions.* Version 1.0. url https://github.com/JD-P/simulacra-aesthetic-captions. Stability AI, 2022.

LAION-Aesthetics^a

 ${}^{a} https://github.com/LAION-AI/laion-datasets/blob/main/laion-aesthetic.md$

- Filter the LAION-5B dataset^a
 - \hookrightarrow Filter: reward model^b
 - $\,\hookrightarrow\,$ Trained on synthetic data "Simulacra Aesthetic Captions" dataset^c
- Filter 8M/120M sample subset of LAION-5B

^aC. Schuhmann et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022). ^bhttps://github.com/LAION-AI/aesthetic-predictor

^cJ. D. Pressman, K. Crowson, and Simulacra Captions Contributors. *Simulacra Aesthetic Captions*. Version 1.0. url https://github.com/JD-P/simulacra-aesthetic-captions. Stability AI, 2022.

LAION-Aesthetics^a

 ${}^{a}https://github.com/LAION-AI/laion-datasets/blob/main/laion-aesthetic.md$

Filter the LAION-5B dataset^a

 \hookrightarrow Filter: reward model^b

 \hookrightarrow Trained on synthetic data "Simulacra Aesthetic Captions" dataset^c

▶ Filter 8M/120M sample subset of LAION-5B

^aC. Schuhmann et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022). ^bhttps://github.com/LAION-AI/aesthetic-predictor

^cJ. D. Pressman, K. Crowson, and Simulacra Captions Contributors. *Simulacra Aesthetic Captions*. Version 1.0. url https://github.com/JD-P/simulacra-aesthetic-captions. Stability AI, 2022.

JourneyDB Dataset^a

^aP. Junting et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).

▶ Midjourney^a: text-to-image model

▶ Midjourney "*discord*" server

JourneyDB Dataset^a

^aP. Junting et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).

- Midjourney^a: text-to-image model
- ▶ Midjourney "*discord*" server

 \hookrightarrow User can request prompts

JourneyDB Dataset^a

^aP. Junting et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).

- ▶ Midjourney^a: text-to-image model
- ▶ Midjourney "*discord*" server
 - $\hookrightarrow \ \mathsf{User} \ \mathsf{can} \ \mathsf{request} \ \mathsf{prompts}$
 - \hookrightarrow Midjourney proposes K=4 images

JourneyDB Dataset^a

^aP. Junting et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).

- ▶ Midjourney^a: text-to-image model
- ▶ Midjourney "*discord*" server
 - $\hookrightarrow \ \mathsf{User} \ \mathsf{can} \ \mathsf{request} \ \mathsf{prompts}$
 - \hookrightarrow Midjourney proposes K = 4 images
 - \hookrightarrow Users vote for which image to upscale

JourneyDB Dataset^a

^aP. Junting et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).

- ▶ Midjourney^a: text-to-image model
- ▶ Midjourney "*discord*" server
 - $\hookrightarrow \ \mathsf{User} \ \mathsf{can} \ \mathsf{request} \ \mathsf{prompts}$
 - \hookrightarrow Midjourney proposes K = 4 images
 - $\,\hookrightarrow\,$ Users vote for which image to upscale

^aMidjourney. https://www.midjourney.com/home/. Version 5.2. Accessed: 2023-09-09. 2023.

Remarks

- No access to pairwise comparisons
 - \rightarrow Only access to the "winning" samples
 - \hookrightarrow As opposed to RHLF^{*ab*}

^aD. M. Ziegler et al. "Fine-tuning language models from human preferences". In: *arXiv preprint arXiv:1909.08593* (2019). ^bR. Rafailov et al. "Direct preference optimization: Your language model is secretly a reward model". In: *NeurIPS* (2024).

JourneyDB Dataset^a

^aP. Junting et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).

- ▶ Midjourney^a: text-to-image model
- ▶ Midjourney "*discord*" server
 - $\hookrightarrow \ \mathsf{User} \ \mathsf{can} \ \mathsf{request} \ \mathsf{prompts}$
 - \hookrightarrow Midjourney proposes K = 4 images
 - $\,\hookrightarrow\,$ Users vote for which image to upscale

^aMidjourney. https://www.midjourney.com/home/. Version 5.2. Accessed: 2023-09-09. 2023.

Remarks

- ▶ No access to pairwise comparisons
 - $\,\hookrightarrow\,$ Only access to the "winning" samples
 - \hookrightarrow As opposed to RHLF^{*ab*}

^aD. M. Ziegler et al. "Fine-tuning language models from human preferences". In: *arXiv preprint arXiv:1909.08593* (2019). ^bR. Rafailov et al. "Direct preference optimization: Your language model is secretly a reward model". In: *NeurIPS* (2024).

A Simple Curation Model 1/2

A Simple Curation Model 2/2

Curation Model

 \blacktriangleright Suppose the existence of a reward model r

 \hookrightarrow score r(x) to each sample x

Sample
$$\tilde{\mathbf{x}}_1 \sim p_t, \ldots, \tilde{\mathbf{x}}_K \sim p_t, i.i.d.$$

Pick
$$\hat{\mathbf{x}} \sim \mathcal{BT}(\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K)$$
, i.e.,
 $\mathbb{P}(\hat{\mathbf{x}} = \tilde{\mathbf{x}}_k | \tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K) = \frac{e^{r(\tilde{\mathbf{x}}_k)}}{\sum_{j=1}^K e^{r(\tilde{\mathbf{x}}_j)}}, \ 1 \le k \le K$

$$p_{t+1} = \underset{p \in \mathcal{P}}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \Big[\log p(x) \Big] + \lambda \cdot \mathbb{E}_{\substack{\mathbf{\tilde{x}}_1, \dots, \mathbf{\tilde{x}}_K \sim p_t \\ \mathbf{\hat{x}} \sim \mathcal{BT}(\mathbf{\tilde{x}}_1, \dots, \mathbf{\tilde{x}}_K)}} \Big[\log p(\mathbf{\hat{x}}) \Big]$$

A Simple Curation Model 2/2

Curation Model

 \blacktriangleright Suppose the existence of a reward model r

 \hookrightarrow score r(x) to each sample x

Sample
$$\tilde{\mathbf{x}}_1 \sim p_t, \ldots, \tilde{\mathbf{x}}_K \sim p_t, i.i.d.$$

Pick
$$\hat{\mathbf{x}} \sim \mathcal{BT}(\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K)$$
, i.e.,
 $\mathbb{P}(\hat{\mathbf{x}} = \tilde{\mathbf{x}}_k | \tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K) = \frac{e^{r(\tilde{\mathbf{x}}_k)}}{\sum_{j=1}^K e^{r(\tilde{\mathbf{x}}_j)}}, \ 1 \le k \le K$

$$p_{t+1} = \underset{p \in \mathcal{P}}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \Big[\log p(x) \Big] + \lambda \cdot \mathbb{E}_{\substack{\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K \sim p_t \\ \hat{\mathbf{x}} \sim \mathcal{BT}(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K)}} \Big[\log p(\hat{\mathbf{x}}) \Big]$$

$$p_{t+1} = \underset{p \in \mathcal{P}}{\arg \max} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \left[\log p(x) \right] + \lambda \cdot \mathbb{E}_{\substack{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K \sim p_t \\ \hat{\mathbf{x}} \sim \mathcal{BT}(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K)}} \left[\log p(\hat{\mathbf{x}}) \right]$$

Q: What will happen?

$$p_{t+1} = \underset{p \in \mathcal{P}}{\arg \max} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \left[\log p(x) \right] + \lambda \cdot \mathbb{E}_{\substack{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K \sim p_t \\ \hat{\mathbf{x}} \sim \mathcal{BT}(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K)}} \left[\log p(\hat{\mathbf{x}}) \right]$$

Q: What will happen?

Results
$$\mathbb{E}_{p_t}\left[e^{r(x)}\right] \xrightarrow{t \to \infty} e^{r_*} \quad \text{and} \quad \operatorname{Var}_{p_t}\left[e^{r(x)}\right] \xrightarrow{t \to \infty} 0 \ .$$

$$p_{t+1} = \underset{p \in \mathcal{P}}{\arg \max} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \left[\log p(x) \right] + \lambda \cdot \mathbb{E}_{\substack{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K \sim p_t \\ \hat{\mathbf{x}} \sim \mathcal{BT}(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K)}} \left[\log p(\hat{\mathbf{x}}) \right]$$

Q: What will happen?

Results

$$\mathbb{E}_{p_t}\left[e^{r(x)}\right] \xrightarrow{t \to \infty} e^{r_*} \quad \text{and} \quad \operatorname{Var}_{p_t}\left[e^{r(x)}\right] \xrightarrow{t \to \infty} 0 \ .$$

Other Results

- ▶ Equivalent to do RLHF if $K \to \infty$
- ▶ Can be extended with a mix of real and synthetic data

$$p_{t+1} = \underset{p \in \mathcal{P}}{\arg \max} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \left[\log p(x) \right] + \lambda \cdot \mathbb{E}_{\substack{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K \sim p_t \\ \hat{\mathbf{x}} \sim \mathcal{BT}(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_K)}} \left[\log p(\hat{\mathbf{x}}) \right]$$

Q: What will happen?

Results

$$\mathbb{E}_{p_t}\left[e^{r(x)}\right] \xrightarrow{t \to \infty} e^{r_*} \quad \text{and} \quad \operatorname{Var}_{p_t}\left[e^{r(x)}\right] \xrightarrow{t \to \infty} 0 \; .$$

Other Results

- ▶ Equivalent to do RLHF if $K \to \infty$
- ▶ Can be extended with a mix of real and synthetic data

▶ reward(x) = confidence of a pretrained classifier for the image x
 ▶ λ = 1/2

Future Work

► Filtering without Human-Feedback?

ightarrow Score per sample? Downstream-task specific?

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: *NeurIPS* (2023). ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).

- ^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).
- ^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Future Work

- ► Filtering without Human-Feedback?
 - $\,\hookrightarrow\,$ Score per sample? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - \hookrightarrow Classifier to score the samples

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: *NeurIPS* (2023). ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).

^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).

^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Future Work

- ► Filtering without Human-Feedback?
 - $\,\hookrightarrow\,$ Score per sample? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - $\,\hookrightarrow\,$ Classifier to score the samples
 - \hookrightarrow Correlation between accuracy and sample quality?¹

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024)

- ^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).
- ^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Future Work

- ► Filtering without Human-Feedback?
 - $\,\hookrightarrow\,$ Score per sample? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - $\,\hookrightarrow\,$ Classifier to score the samples
 - \hookrightarrow Correlation between accuracy and sample quality?^b
 - \hookrightarrow Score per distribution
 - \hookrightarrow Computationally intensive

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).

- ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).
- ^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).
- ^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Future Work

- ► Filtering without Human-Feedback?
 - $\,\hookrightarrow\,$ Score per sample? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - $\,\hookrightarrow\,$ Classifier to score the samples
 - \hookrightarrow Correlation between accuracy and sample quality?^b
 - $\hookrightarrow \ \mathsf{Score} \ \mathsf{per} \ \mathsf{distribution}?$
 - $\, \hookrightarrow \, \, {\rm Computationally \ intensive} \,$
 - \hookrightarrow Use bad samples/models to improve^{cd}

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: *NeurIPS* (2023). ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).

- ^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).
- ^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Future Work

- ► Filtering without Human-Feedback?
 - $\,\hookrightarrow\,$ Score per sample? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - $\,\hookrightarrow\,$ Classifier to score the samples
 - \hookrightarrow Correlation between accuracy and sample quality?^b
 - $\hookrightarrow \ \mathsf{Score} \ \mathsf{per} \ \mathsf{distribution}?$
 - $\, \hookrightarrow \, \, {\sf Computationally intensive} \,$
 - \hookrightarrow Use bad samples/models to improve^{*cd*}

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).

- ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).
- ^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).
- ^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Future Work

- Filtering without Human-Feedback?
 - $\,\hookrightarrow\,$ Score per sample? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - $\,\hookrightarrow\,$ Classifier to score the samples
 - \hookrightarrow Correlation between accuracy and sample quality?^b
 - $\hookrightarrow \ \mathsf{Score} \ \mathsf{per} \ \mathsf{distribution}?$
 - $\, \hookrightarrow \, \, {\rm Computationally \ intensive} \,$
 - \hookrightarrow Use bad samples/models to improve^{*cd*}

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *TMLR* (2024).

- ^cT. Karras et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: *NeurIPS* (2024).
- ^dS. Alemohammad et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).

Thank You!

- Alemohammad, S. et al. "Self-Consuming Generative Models Go MAD". In: ICLR (2024).
- Alemohammad, S. et al. "Self-Improving Diffusion Models with Synthetic Data". In: arXiv preprint arXiv:2408.16333 (2024).
- Bertrand, Q. et al. "On the Stability of Iterative Retraining of Generative Models on their own Data". In: ICLR (2024).
- Birhane, A., V. U. Prabhu, and E. Kahembwe. "Multimodal datasets: misogyny, pornography, and malignant stereotypes". In: arXiv preprint arXiv:2110.01963 (2021).
- Ferbach, D. et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *NeurIPS* (2024).
- Gulcehre, C. et al. "Reinforced self-training (REST) for language modeling". In: (2023). arXiv: 2308.08998 [cs.CL].
- Hataya, R., H. Bao, and HJ. Arai. "Will Large-scale Generative Models Corrupt Future Datasets?" In: ICCV. 2023.

- Hemmat, R. A. et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: TMLR (2024).
- Ho, J., A. Jain, and P. Abbeel. "Denoising diffusion probabilistic models". In: NeurIPS (2020).
- Jiralerspong, M. et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).
- Junting, P. et al. "JourneyDB: A Benchmark for Generative Image Understanding". In: NeurIPS (2023).
- Karras, T. et al. "Guiding a Diffusion Model with a Bad Version of Itself". In: NeurIPS (2024).
- Midjourney. https://www.midjourney.com/home/. Version 5.2. Accessed: 2023-09-09. 2023.
- Pressman, J. D., K. Crowson, and Simulacra Captions Contributors. Simulacra Aesthetic Captions. Version 1.0. url https://github.com/JD-P/simulacra-aesthetic-captions. Stability AI, 2022.
- Rafailov, R. et al. "Direct preference optimization: Your language model is secretly a reward model". In: *NeurIPS* (2024).

- Schuhmann, C. et al. "Laion-5B: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022).
- Shumailov, I. et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- Wang, Z. et al. "Better diffusion models further improve adversarial training". In: ICML. 2023.
- Ziegler, D. M. et al. "Fine-tuning language models from human preferences". In: arXiv preprint arXiv:1909.08593 (2019).