On the Stability of Iterative Retraining of Generative Models on their own Data

Quentin Bertrand

Joint work with J. A. Bose, M. Jiralerspong, A. Duplessis and G. Gidel

What is a Generative Model?

Generative Model 101

unlabelled

- **Setting**: Access to samples x_1, \ldots, x_n , drawn from a probability distrib. $p, x_i \sim p$
 - \hookrightarrow e.g., set of natural images
- ▶ **Goal**: create new samples $\tilde{\mathbf{x}}_i \sim p$

Applications of Generative Models 1/2

Until 2021, mostly Image-Based Applications, mostly GANs

- \hookrightarrow Text-to-Image^a

^aH. Zhang et al. "StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks". In: ICCV. 2017.

Applications of Generative Models 2/2

More Recent Applications

- ► Large Langage Models
- ► Text-to-Image^a
- ► Protein Generation bc
- ▶ Data augmentation^d

^aStability Al. https://stability.ai/stablediffusion. Version Stable Diffusion XL. Accessed: 2023-09-09. 2023.

^bJ. L. Watson et al. "De novo design of protein structure and function with RFdiffusion". In: Nature 620 (2023).

^cA. J. Bose et al. "SE(3)-Stochastic Flow Matching for Protein Backbone Generation". In: arXiv preprint arXiv:2310.02391 (2023).

^dS. Azizi et al. "Synthetic data from diffusion models improves imagenet classification". In: *TMLR* (2023).

What about training Generative models on their own data?

Reasons of the Success of Generative Models

Generative Models Everywhere

- ▶ Powerful generative models (Diffusion, Flow Matching)
- ► Easy access (Midjourney, Stablediffusion, DALL·E)
- ► Populates the WEB with synthetically generated images

Inevitably Train on Synthetic Data

The Lion dataset already contains synthetically generated images ¹

¹S. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Iterative Retraining is Bad

- ▶ The curse of recursion: Training on generated data makes models forget ^a
- ► Self-Consuming Generative Models MAD^b
- al. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG]

Iterative Retraining is **Bad**

- ▶ The curse of recursion: Training on generated data makes models forget ^a
- ► Self-Consuming Generative Models MAD^b
- al. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Will generative models collapse?!

Iterative Retraining is **Bad**

- ▶ The curse of recursion: Training on generated data makes models forget ^a
- ► Self-Consuming Generative Models MAD^b
- ^al. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Will generative models collapse?!

Training on Synthetic Data is Good

- ▶ Data augmentation for downstream tasks
 - → Adversarial training

 - \hookrightarrow Generative modelling: improves performances for LLMs^c

S. Azizi et al. "Synthetic data from diffusion models improves imagenet classification". In: TMLR (2023).

PR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).

C. Gulcehre et al. "Reinforced self-training (REST) for language modeling". In: (2023), arXiv: 2308.08998 [cs.CL].

Iterative Retraining is **Bad**

- ▶ The curse of recursion: Training on generated data makes models forget ^a
- ► Self-Consuming Generative Models MAD^b
- al. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Will generative models collapse?!

Training on Synthetic Data is Good

- ▶ Data augmentation for downstream tasks
 - \hookrightarrow Adversarial training^a
 - \hookrightarrow Classification with imbalanced datasets b
 - \hookrightarrow Generative modelling: improves performances for LLMs^c

^aS. Azizi et al. "Synthetic data from diffusion models improves imagenet classification". In: TMLR (2023).

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).

^cC. Gulcehre et al. "Reinforced self-training (REST) for language modeling". In: (2023). arXiv: 2308.08998 [cs.CL].

Iterative retraining

Setting

Notation

- $ightharpoonup \hat{p}_{\mathrm{data}}$ Empirical data distribution
- \triangleright *n* Data points
- \triangleright θ^n Parameters of the model
- $ightharpoonup p_{\theta}$ Likelihood of the model

Iterative Retraining

$$\theta_0^n \in \underset{\theta' \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} [\log p_{\theta'}(x)]$$

Setting

Notation

- $ightharpoonup \hat{p}_{\mathrm{data}}$ Empirical data distribution
- \triangleright *n* Data points
- \triangleright θ^n Parameters of the model
- $\triangleright p_{\theta}$ Likelihood of the model

Iterative Retraining

$$\theta_0^n \in \underset{\theta' \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}}[\log p_{\theta'}(x)]$$

$$eta^n_{t+1} \in \underbrace{\mathbb{E}_{x \sim \hat{p}_{ ext{data}}} \log p_{ heta'}(x)}_{ ext{Real data}} + \lambda \underbrace{\mathbb{E}_{ ilde{\mathbf{x}} \sim p_{ heta}^n} \log p_{ heta'}(ilde{\mathbf{x}})}_{ ext{Synthetic data}}$$

Setting

Notation

- $ightharpoonup \hat{p}_{\mathrm{data}}$ Empirical data distribution
- \triangleright *n* Data points
- \triangleright θ^n Parameters of the model
- $\triangleright p_{\theta}$ Likelihood of the model

Iterative Retraining

$$\theta_0^n \in \arg\max_{\theta' \in \Theta} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} [\log p_{\theta'}(x)]$$

$$\theta_{t+1}^n \in \arg\max_{\theta' \in \Theta} \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p_{\theta'}(x)}_{\text{Real data}} + \lambda \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\theta_t}^n} \log p_{\theta'}(\tilde{\mathbf{x}})}_{\text{Synthetic data}}$$

Practical Algorithm

```
Algorithm: Iterative Retraining of Generative Models
```

```
\begin{array}{l} \text{input}: \ \mathcal{D}_{\mathrm{real}} := \{x_i\}_{i=1}^n, \ \mathcal{A} \ /\!/ \ \text{True data, learning procedure} \\ \text{param:} \ n_{\mathrm{retrain.}}, \ {\color{blue}\lambda} \ /\!/ \ \text{Number of retraining, proportion of gen. data} \\ p_{\theta_0} = \mathcal{A}(\mathcal{D}_{\mathrm{real}}) \ /\!/ \ \text{Learn generative model on true data} \\ \text{for } t \ in \ 1, \dots, n_{\mathrm{retrain.}} \ \text{do} \\ & \left| \ \mathcal{D}_{\mathrm{synth}} = \{\tilde{\mathbf{x}}_i\}_{i=1}^{\lfloor \boldsymbol{\lambda} \cdot \boldsymbol{n} \rfloor}, \ \text{with} \ \tilde{\mathbf{x}}_i \sim p_{\theta_{t-1}} \ /\!/ \ \text{Sample} \ \lfloor \boldsymbol{\lambda} \cdot \boldsymbol{n} \rfloor \ \text{synth.} \ \text{data points} \\ & p_{\theta_t} = \mathcal{A}(\mathcal{D}_{\mathrm{real}} \cup \mathcal{D}_{\mathrm{synth}}) \ /\!/ \ \text{Learn gen. model on synth.} \ \text{and true data} \\ & \text{return} \ p_{\theta_{n_{\mathrm{retrain.}}}} \end{array}
```

Warm Up: Only Retrain on your Own Data 1/3

Iterative Retraining

$$\theta_0^n \in \underset{\theta' \in \Theta}{\arg\max} \, \mathbb{E}_{x \sim \hat{p}_{\text{data}}} [\log p_{\theta'}(x)]$$

$$\theta_{t+1}^n \in \underset{\theta' \in \Theta}{\arg\max} \, \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p_{\theta'}(x)}_{\text{Real data}} + \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\theta_t}^n} \log p_{\theta'}(\tilde{\mathbf{x}})}_{\text{Synthetic data}}$$

Q: What will happen?

Warm Up: Only Retrain on your Own Data 1/3

$\theta_0^n \in \argmax_{\theta' \in \Theta} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} [\log p_{\theta'}(x)]$ $\theta_{t+1}^n \in \argmax_{\theta' \in \Theta} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p_{\theta'}(x) + \mathbf{X} \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\theta_t}^n} \log p_{\theta'}(\tilde{\mathbf{x}})}_{\text{Synthetic data}}$

Q: What will happen?

Warm Up: Only Retrain on your Own Data 2/3

Q: What will happen?

A: Mode Collapse

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiaissed estimator

Initialization: μ_0, σ_0

Data:
$$X_j^0 = \mu_0 + \sigma_0 Z_j$$
, with $Z_j \overset{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n$

Learning step:
$$\begin{cases} \mu_{t+1} &= \frac{1}{n} \sum_j X_j^t \\ \sigma_{t+1}^2 &= \frac{1}{n-1} \sum_j \left(X_j^t - \mu_{t+1}\right)^2 \end{cases}$$

Sampling step:
$$\left\{X_j^{t+1} = \mu_{t+1} + \sigma_{t+1} Z_j^{t+1}, \text{ with } Z_j^{t+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \right\}$$

$$\mathbb{E}(\sigma_t) \le \alpha^t \mathbb{E}(\sigma_0) \underset{t \to +\infty}{\longrightarrow} 0$$

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiaissed estimator

Initialization: μ_0, σ_0

Learning step:
$$\begin{cases} \mu_{t+1} &= \frac{1}{n} \sum_j X_j^t \\ \sigma_{t+1}^2 &= \frac{1}{n-1} \sum_j \left(X_j^t - \mu_{t+1}\right)^2 \end{cases}$$

Sampling step:
$$\left\{X_j^{t+1} = \mu_{t+1} + \sigma_{t+1} Z_j^{t+1}, \text{ with } Z_j^{t+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \right\}$$

Result

$$\mathbb{E}(\sigma_t) \leq \alpha^t \mathbb{E}(\sigma_0) \underset{t \to +\infty}{\longrightarrow} 0$$

Same type of results holds for a single multidimensional Gaussian

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiaissed estimator

Initialization: μ_0, σ_0

Data:
$$X_j^0 = \mu_0 + \sigma_0 Z_j$$
, with $Z_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, 1 \leq j \leq n$

Learning step:
$$\begin{cases} \mu_{t+1} &= \frac{1}{n} \sum_j X_j^t \\ \sigma_{t+1}^2 &= \frac{1}{n-1} \sum_j \left(X_j^t - \mu_{t+1}\right)^2 \end{cases}$$

Sampling step:
$$\left\{X_j^{t+1} = \mu_{t+1} + \sigma_{t+1} Z_j^{t+1}, \text{ with } Z_j^{t+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}_{0,1}, \ 1 \leq j \leq n \right\}$$

Result

$$\mathbb{E}(\sigma_t) \leq \alpha^t \mathbb{E}(\sigma_0) \underset{t \to +\infty}{\longrightarrow} 0$$

Same type of results holds for a single multidimensional Gaussian

Proof Idea

Iterative Retraining

$$\theta_0^n \in \arg\max_{\theta' \in \Theta} \mathbb{E}_{x \sim \hat{p}_{\text{data}}} [\log p_{\theta'}(x)]$$

$$\theta_{t+1}^n \in \arg\max_{\theta' \in \Theta} \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p_{\theta'}(x)}_{\text{Real data}} + \lambda \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\theta_t}^n} \log p_{\theta'}(\tilde{\mathbf{x}})}_{\text{Synthetic data}} := \mathcal{G}(\theta_t^n)$$

Idea

- ▶ Fixed-point iteration $\theta_{t+1}^n = \mathcal{G}(\theta_t^n)$
- ▶ Study the stability of the fixed-point iteration
- ▶ Link with performative prediction!

Retrain of Generative Models: Informal

Assumptions

- ► Regularity of the log-likelihood
- ▶ The first generative model is "good enough"
 - $\hookrightarrow \mathcal{W}(p_{\text{data}}, p_{\theta_0}) < \epsilon$
- ▶ Infinite Data

- ► Regularity + good enough model + infinite data
- ightharpoonup stability of the fixed-point $\mathcal{G}(\theta)$

Retrain of Generative Models: Informal

Assumptions

- ► Regularity of the log-likelihood
 - \hookrightarrow Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"

$$\hookrightarrow \mathcal{W}(p_{\text{data}}, p_{\theta_0}) < \epsilon$$

▶ Infinite Data

- ► Regularity + good enough model + infinite data
- $\blacktriangleright \implies$ stability of the fixed-point $\mathcal{G}(\theta)$
- ► Can be extended with finite data
- ▶ Requires extra sample complexity assumption

Retrain of Generative Models: Informal

Assumptions

- ► Regularity of the log-likelihood
 - \hookrightarrow Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"

$$\hookrightarrow \mathcal{W}(p_{\text{data}}, p_{\theta_0}) < \epsilon$$

▶ Infinite Data

- ► Regularity + good enough model + infinite data
- $\blacktriangleright \implies$ stability of the fixed-point $\mathcal{G}(\theta)$
- ► Can be extended with finite data
- ▶ Requires extra sample complexity assumption

Experiments

Conclusion and Future Work

Future Work

- ► Filtering Procedure
 - → Score for each samples? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - \hookrightarrow Classifier to score the samples b
 - \hookrightarrow Theory?
- Links with reinforcement learning / semi-supervised learning
- ▶ Retraining on a mixture of generative models

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).

Conclusion and Future Work

Future Work

- ► Filtering Procedure
 - → Score for each samples? Downstream-task specific?
 - \hookrightarrow Feature Likelihood Score (FLS)^a
 - \hookrightarrow Classifier to score the samples b
 - \hookrightarrow Theory?
- ▶ Links with reinforcement learning / semi-supervised learning
- ▶ Retraining on a mixture of generative models

Thank You!

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).

- ► Alemohammad, S. et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].
- ▶ Azizi, S. et al. "Synthetic data from diffusion models improves imagenet classification". In: *TMLR* (2023).
- ▶ Bose, A. J. et al. "SE(3)-Stochastic Flow Matching for Protein Backbone Generation". In: arXiv preprint arXiv:2310.02391 (2023).
- ► Gulcehre, C. et al. "Reinforced self-training (REST) for language modeling". In: (2023). arXiv: 2308.08998 [cs.CL].
- ► Hemmat, R. A. et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).
- ▶ Jiralerspong, M. et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: NeurIPS (2023).
- ► Shumailov, I. et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- ► Stability Al. https://stability.ai/stablediffusion. Version Stable Diffusion XL. Accessed: 2023-09-09. 2023.

- ▶ Watson, J. L. et al. "De novo design of protein structure and function with RFdiffusion". In: *Nature* 620 (2023).
- ▶ Zhang, H. et al. "StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks". In: ICCV. 2017.