Some Challenges around Retraining Generative Models on their own Data

Quentin Bertrand

Équipe MALICE

Joint work with D. Ferbach, J. A. Bose, M. Jiralerspong, A. Duplessis and G. Gidel

Data x_1, \ldots, x_n

Goal: new synthetic samples $\tilde{\mathbf{x}}_i$

Generative Model 101

▶ Setting: Access to samples x_1, \ldots, x_n

Data x_1, \ldots, x_n

Goal: new synthetic samples $\tilde{\mathbf{x}}_i$

Generative Model $101\,$

unlabelled data

Setting: Access to samples x_1, \ldots, x_n

ightarrow Drawn from a probability distribution p, $x_i \sim p$

Data x_1, \ldots, x_n

Goal: new synthetic samples $\tilde{\mathbf{x}}_i$

Generative Model $101\,$

unlabelled data

- **Setting**: Access to samples x_1, \ldots, x_n
 - \hookrightarrow Drawn from a probability distribution p, $x_i \sim p$

 \hookrightarrow *e.g.*, a set of images

Data x_1, \ldots, x_n

Goal: new synthetic samples $\tilde{\mathbf{x}}_i$

Generative Model $101\,$

unlabelled data

- **Setting**: Access to samples x_1, \ldots, x_n
 - $\,\hookrightarrow\,$ Drawn from a probability distribution p , $x_i \sim p$
 - \hookrightarrow *e.g.*, a set of images
- **Goal**: Create new samples $\tilde{\mathbf{x}}_i \sim p$

Data x_1, \ldots, x_n

Goal: new synthetic samples $\tilde{\mathbf{x}}_i$

Generative Model $101\,$

unlabelled data

- **Setting**: Access to samples x_1, \ldots, x_n
 - \hookrightarrow Drawn from a probability distribution p, $x_i \sim p$
 - \hookrightarrow *e.g.*, a set of images
- **Goal**: Create new samples $\tilde{\mathbf{x}}_i \sim p$

 \hookrightarrow *e.g.,* generate images

Data x_1, \ldots, x_n

Goal: new synthetic samples $\tilde{\mathbf{x}}_i$

Generative Model $101\,$

unlabelled data

- **Setting**: Access to samples x_1, \ldots, x_n
 - $\,\hookrightarrow\,$ Drawn from a probability distribution p , $x_i \sim p$
 - \hookrightarrow *e.g.*, a set of images
- **Goal**: Create new samples $\tilde{\mathbf{x}}_i \sim p$
 - \hookrightarrow *e.g.,* generate images

Generative Model 201 (Class Conditional Generative Models

Setting: Access to samples $(x_1, y_1), \dots, (x_n, y_n)$

Generative Model 201 (Class Conditional Generative Models)

Setting: Access to samples $(x_1, y_1), \dots, (x_n, y_n)$

ightarrow Drawn from a probability distribution p, $x_i \sim p(\cdot|y_i)$

Setting: Access to samples $(x_1, y_1), \ldots, (x_n, y_n)$

 \hookrightarrow Drawn from a probability distribution p, $x_i \sim p(\cdot|y_i)$

 \hookrightarrow e.g., a set of images x_i with class y_i

Generative Model 201 (Class Conditional Generative Models)

labelled data

- **Setting**: Access to samples $(x_1, y_1), \ldots, (x_n, y_n)$
 - \hookrightarrow Drawn from a probability distribution p, $x_i \sim p(\cdot|m{y}_i)$
 - \hookrightarrow e.g., a set of images x_i with class y_i

Goal: Create new samples given a class $\tilde{\mathbf{x}}_i \sim p(\cdot|\mathbf{y}_i)$

Generative Model 201 (Class Conditional Generative Models)

labelled data

- **Setting**: Access to samples $(x_1, y_1), \ldots, (x_n, y_n)$
 - \hookrightarrow Drawn from a probability distribution p, $x_i \sim p(\cdot|m{y}_i)$
 - \hookrightarrow e.g., a set of images x_i with class y_i

▶ Goal: Create new samples given a class $\tilde{\mathbf{x}}_i \sim p(\cdot | \boldsymbol{y}_i)$

 $\rightarrow e.g.$, generate images of planes

Generative Model 201 (Class Conditional Generative Models)

labelled data

Setting: Access to samples $(x_1, y_1), \ldots, (x_n, y_n)$

 \hookrightarrow Drawn from a probability distribution p, $x_i \sim p(\cdot|m{y}_i)$

 \hookrightarrow e.g., a set of images x_i with class y_i

▶ Goal: Create new samples given a class $\tilde{\mathbf{x}}_i \sim p(\cdot|\mathbf{y}_i)$

 \hookrightarrow e.g., generate images of planes

Setting: trained on samples $(x_1, y_1), \ldots, (x_n, y_n)$

 \hookrightarrow Drawn from a probability distribution p, $x_i \sim p(\cdot| ext{caption } y_i)$

Trick: Create a 'meaningful' representation of the text/caption

► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence

► "From Noise to Structure"

► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence

- "From Noise to Structure"
- ► Just samples, no density

- ► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density

 \hookrightarrow Too hard to sample from the set of natural images

- ► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - \hookrightarrow Easy to sample from standard Gaussian noise

- ► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ► Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - $\,\hookrightarrow\,$ Easy to sample from standard Gaussian noise
 - \hookrightarrow "Rebranding of sampling"

- ► Text-to-Text Models: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - $\,\hookrightarrow\,$ Easy to sample from standard Gaussian noise
 - $\, \hookrightarrow \, \ {\rm "Rebranding \ of \ sampling"} \,$
- **Evaluation?** Quality of the generated images?

- ► Text-to-Text Models: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - $\,\hookrightarrow\,$ Easy to sample from standard Gaussian noise
 - $\, \hookrightarrow \, \text{"Rebranding of sampling"} \,$
- **Evaluation?** Quality of the generated images?
 - \hookrightarrow No cross-validation

- ► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - $\,\hookrightarrow\,$ Easy to sample from standard Gaussian noise
 - $\, \hookrightarrow \, \text{"Rebranding of sampling"} \,$
- **Evaluation?** Quality of the generated images?
 - $\, \hookrightarrow \, \operatorname{No} \, \operatorname{cross-validation} \,$
 - \hookrightarrow Very challenging for text-to-text models

- ► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - $\,\hookrightarrow\,$ Easy to sample from standard Gaussian noise
 - $\, \hookrightarrow \, \text{"Rebranding of sampling"} \,$
- **Evaluation?** Quality of the generated images?
 - $\, \hookrightarrow \, \operatorname{No} \, \operatorname{cross-validation} \,$
 - $\,\hookrightarrow\,$ Very challenging for text-to-text models
 - \hookrightarrow Often use other models to assess the quality *e.g.*, GPT

- ► **Text-to-Text Models**: Conditional text generation w.r.t. the previous text sequence
- "From Noise to Structure"
- ▶ Just samples, no density
 - $\,\hookrightarrow\,$ Too hard to sample from the set of natural images
 - $\,\hookrightarrow\,$ Easy to sample from standard Gaussian noise
 - $\, \hookrightarrow \, \text{"Rebranding of sampling"} \,$
- **Evaluation?** Quality of the generated images?
 - $\, \hookrightarrow \, \operatorname{No} \, \operatorname{cross-validation} \,$
 - $\,\hookrightarrow\,$ Very challenging for text-to-text models
 - $\,\hookrightarrow\,$ Often use other models to assess the quality $\mathit{e.g.},\,$ GPT

Applications of Generative Models 1/2

Until 2021, mostly Image-Based Applications, mostly GANs^a

^aI. Goodfellow et al. "Generative adversarial nets". In: NeurIPS (2014).

- $\, \hookrightarrow \, \, \mathsf{Generate} \, \, \mathsf{Photorealistic} \, \, \mathsf{Images} \,$
- \hookrightarrow Semantic Segmentation^{*a*}
- \hookrightarrow Image-to-Image (Inpainting, Denoising, Style Transfer)
- \hookrightarrow Text-to-Image^b

^aP. Luc et al. "Semantic segmentation using adversarial networks". In: arXiv preprint arXiv:1611.08408 (2016).

^bH. Zhang et al. "StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks". In: ICCV. 2017.

Applications of Generative Models 2/2

More Recent Applications

- ► Large Langage Models^a (Chat GPT)
- ► Text-to-Image^b (Stable Diffusion)
- Protein Generation^{cd} (Graphs)
- Data augmentation^e

^aJ. Achiam et al. "Gpt-4 technical report". In: arXiv preprint arXiv:2303.08774 (2023).
^bStability Al. https://stability.ai/stablediffusion. Version Stable Diffusion XL. Accessed: 2023-09-09. 2023.
^cJ. L. Watson et al. "De novo design of protein structure and function with RFdiffusion". In: Nature 620 (2023).
^dA. J. Bose et al. "SE(3)-Stochastic Flow Matching for Protein Backbone Generation". In: ICLR (2023).
^eZ. Wang et al. "Better diffusion models further improve adversarial training". In: ICML. 2023.

Reasons of the Success of Generative Models

Generative Models Everywhere

- ▶ Powerful generative models (Diffusion, Flow Matching)
- ► Easy access (Midjourney, Stablediffusion, DALL·E)
- ▶ Populates the WEB with synthetically generated images

Inevitably Train on Synthetic Data

The Lion¹ dataset already contains synthetically generated images²

¹C. Schuhmann et al. "Laion-5b: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022). ²S. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

What about training Generative models on their own data?

Training on Synthetic Data, Good or Bad?

Iterative Retraining is **Bad**

The curse of recursion: Training on generated data makes models forget^a
 Self-Consuming Generative Models MAD^b

al. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.L0]. bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.L6].

Training on Synthetic Data, Good or Bad?

Iterative Retraining is **Bad**

The curse of recursion: Training on generated data makes models forget^a
 Self-Consuming Generative Models MAD^b

^aI. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Will generative models collapse?!

Training on Synthetic Data, Good or Bad?

Iterative Retraining is **Bad**

The curse of recursion: Training on generated data makes models forget^a
 Self-Consuming Generative Models MAD^b

^aI. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Will generative models collapse?!

Training on Synthetic Data is Good

- Data augmentation for downstream tasks
 - \hookrightarrow Adversarial training^a
 - \hookrightarrow Classification with imbalanced datasets^b
 - \hookrightarrow Generative modelling: improves performances for LLMs^c

^aZ. Wang et al. "Better diffusion models further improve adversarial training". In: *ICML*, 2023.
 ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *arXiv preprint arXiv:2310.00158* (2023).

Training on Synthetic Data, Good or Bad?

Iterative Retraining is **Bad**

The curse of recursion: Training on generated data makes models forget^a
 Self-Consuming Generative Models MAD^b

^aI. Shumailov et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG]. ^bS. Alemohammad et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].

Will generative models collapse?!

Training on Synthetic Data is Good

- Data augmentation for downstream tasks
 - \hookrightarrow Adversarial training^{*a*}
 - \hookrightarrow Classification with imbalanced datasets^b
 - \hookrightarrow Generative modelling: improves performances for LLMs^c

^aZ. Wang et al. "Better diffusion models further improve adversarial training". In: *ICML*. 2023.

^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).

Iterative retraining

Setting

Notation

- \blacktriangleright \hat{p}_{data} Empirical data distribution
- \blacktriangleright *n* Data points
- ▶ θ^n Parameters of the model
- $\blacktriangleright p_{\theta}$ Likelihood of the model

Iterative Retraining

$$\theta_0^n \in \underset{\theta' \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}}[\log p_{\theta'}(x)]$$

Setting

Notation

- \blacktriangleright \hat{p}_{data} Empirical data distribution
- \blacktriangleright *n* Data points
- ▶ θ^n Parameters of the model
- $\blacktriangleright p_{\theta}$ Likelihood of the model

Iterative Retraining

$$\theta_{0}^{n} \in \operatorname*{arg\,max}_{\theta' \in \Theta} \mathbb{E}_{x \sim \hat{p}_{\text{data}}}[\log p_{\theta'}(x)]$$
$$\theta_{t+1}^{n} \in \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p_{\theta'}(x)}_{\text{Real data}} + \lambda \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\theta} t} \log p_{\theta'}(\tilde{\mathbf{x}})}_{\text{Synthetic data}}$$

Setting

Notation

- \blacktriangleright \hat{p}_{data} Empirical data distribution
- \blacktriangleright *n* Data points
- ▶ θ^n Parameters of the model
- $\blacktriangleright p_{\theta}$ Likelihood of the model

Iterative Retraining

$$\theta_{0}^{n} \in \underset{\theta' \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \hat{p}_{\text{data}}}[\log p_{\theta'}(x)]$$
$$\theta_{t+1}^{n} \in \underset{\theta' \in \Theta}{\operatorname{arg\,max}} \underbrace{\mathbb{E}_{x \sim \hat{p}_{\text{data}}} \log p_{\theta'}(x)}_{\text{Real data}} + \lambda \underbrace{\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\theta_{t}}^{n}} \log p_{\theta'}(\tilde{\mathbf{x}})}_{\text{Synthetic data}}$$

Practical Algorithm

Algorithm: Iterative Retraining of Generative Models

 $\begin{array}{l} \text{input}: \ \mathcal{D}_{\text{real}} \coloneqq \{x_i\}_{i=1}^n, \ \mathcal{A} \ \ {\prime\prime} \ \text{True data, learning procedure} \\ \text{param: } n_{\text{retrain.}}, \ \lambda \ \ {\prime\prime} \ \text{Number of retraining, proportion of gen. data} \\ p_{\theta_0} = \mathcal{A}(\mathcal{D}_{\text{real}}) \ \ {\prime\prime} \ \text{Learn generative model on true data} \\ \text{for } t \ in \ 1, \ldots, n_{\text{retrain.}} \ \text{do} \\ \left| \begin{array}{c} \mathcal{D}_{\text{synth}} = \{\tilde{\mathbf{x}}_i\}_{i=1}^{\lfloor \lambda \cdot n \rfloor}, \ \text{with } \ \tilde{\mathbf{x}}_i \sim p_{\theta_{t-1}} \ \ {\prime\prime} \ \text{Sample } \lfloor \lambda \cdot n \rfloor \ \text{synth. data points} \\ p_{\theta_t} = \mathcal{A}(\mathcal{D}_{\text{real}} \cup \mathcal{D}_{\text{synth}}) \ \ {\prime\prime} \ \text{Learn gen. model on synth. and true data} \\ \text{return } p_{\theta_{n_{\text{retrain.}}}} \end{array} \right.$

Warm Up: Only Retrain on your Own Data 1/3

Q: What will happen?

Warm Up: Only Retrain on your Own Data 1/3

Q: What will happen?

Warm Up: Only Retrain on your Own Data 2/3

Q: What will happen? A: Mode Collapse

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiaissed estimator

Result

$$\mathbb{E}(\sigma_t) \le \alpha^t \sigma_0 \xrightarrow[t \to +\infty]{} 0, \ 0 \le \alpha < 1$$

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiaissed estimator

Result

$$\mathbb{E}(\sigma_t) \le \alpha^t \sigma_0 \xrightarrow[t \to +\infty]{} 0, \ 0 \le \alpha < 1$$

Same type of results holds for a single multidimensional Gaussian

Warm Up: Only Retrain on your Own Data 3/3

Single unidimensional Gaussian, unbiaissed estimator

Result

$$\mathbb{E}(\sigma_t) \le \alpha^t \sigma_0 \xrightarrow[t \to +\infty]{} 0, \ 0 \le \alpha < 1$$

Same type of results holds for a single multidimensional Gaussian

General Case

Idea

- ▶ Fixed-point iteration $\theta_{t+1}^n = \mathcal{G}(\theta_t^n)$
- Study the stability of the fixed-point iteration
- Link with performative prediction!

General Case

Idea

- ▶ Fixed-point iteration $\theta_{t+1}^n = \mathcal{G}(\theta_t^n)$
- Study the stability of the fixed-point iteration
- Link with performative prediction!

Retrain of Generative Models: Informal

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite Data

Result

- ▶ Regularity + good enough model + infinite data
- $\blacktriangleright \implies$ stability of the fixed-point $\mathcal{G}(\theta)$

Retrain of Generative Models: Informal

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite Data

Result

- ▶ Regularity + good enough model + infinite data
- $\blacktriangleright \implies \text{stability of the fixed-point } \mathcal{G}(\theta)$

Can be extended with finite sample

Requires extra sample complexity assumption

Retrain of Generative Models: Informal

Assumptions

- Regularity of the log-likelihood
 - $\,\hookrightarrow\,$ Local Lipschitzness and strong convexity
- ▶ The first generative model is "good enough"
 - $\, \hookrightarrow \, \mathcal{W}(p_{\text{data}}, p_{\pmb{\theta}_0}) < \epsilon$
- Infinite Data

Result

- Regularity + good enough model + infinite data
- $\blacktriangleright \implies$ stability of the fixed-point $\mathcal{G}(\theta)$

Can be extended with finite sample

Requires extra sample complexity assumption

0 retrain. 5 retrain. 10 retrain. 15 retrain. 20 retrain.

Experiments

Conclusion and Future Work

Future Work

• Data augmentation? \rightarrow Filtering Procedure

 \hookrightarrow Score for each samples? Downstream-task specific?

 \hookrightarrow Feature Likelihood Score (FLS)^a

 \hookrightarrow Classifier to score the samples^b

 $\,\hookrightarrow\,$ Correlation between accuracy and sample quality?

 \hookrightarrow Theory?

 \blacktriangleright Links with reinforcement learning / semi-supervised learning c

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: *NeurIPS* (2023). ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *arXiv preprint arXiv:2310.00158* (2023). ^cD. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *arXiv preprint arXiv:2407.09499* (2024).

Thank You!

Conclusion and Future Work

Future Work

• Data augmentation? \rightarrow Filtering Procedure

 \hookrightarrow Score for each samples? Downstream-task specific?

 \hookrightarrow Feature Likelihood Score (FLS)^a

 \hookrightarrow Classifier to score the samples^b

 $\,\hookrightarrow\,$ Correlation between accuracy and sample quality?

 \hookrightarrow Theory?

 \blacktriangleright Links with reinforcement learning / semi-supervised learning c

^aM. Jiralerspong et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: *NeurIPS* (2023). ^bR. A. Hemmat et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: *arXiv preprint arXiv:2310.00158* (2023). ^cD. Ferbach et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *arXiv preprint arXiv:2407.09499* (2024).

Thank You!

- ► Achiam, J. et al. "Gpt-4 technical report". In: arXiv preprint arXiv:2303.08774 (2023).
- Alemohammad, S. et al. "Self-Consuming Generative Models Go MAD". In: (2023). arXiv: 2307.01850 [cs.LG].
- Bose, A. J. et al. "SE(3)-Stochastic Flow Matching for Protein Backbone Generation". In: ICLR (2023).
- ► Ferbach, D. et al. "Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences". In: *arXiv preprint arXiv:2407.09499* (2024).
- ► Goodfellow, I. et al. "Generative adversarial nets". In: NeurIPS (2014).
- Gulcehre, C. et al. "Reinforced self-training (REST) for language modeling". In: (2023). arXiv: 2308.08998 [cs.CL].
- Hemmat, R. A. et al. "Feedback-guided Data Synthesis for Imbalanced Classification". In: arXiv preprint arXiv:2310.00158 (2023).
- Jiralerspong, M. et al. "Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples". In: *NeurIPS* (2023).
- Luc, P. et al. "Semantic segmentation using adversarial networks". In: arXiv preprint arXiv:1611.08408 (2016).

- Schuhmann, C. et al. "Laion-5b: An open large-scale dataset for training next generation image-text models". In: *NeurIPS* (2022).
- Shumailov, I. et al. "The Curse of Recursion: Training on Generated Data Makes Models Forget". In: (2023). arXiv: 2305.17493 [cs.LG].
- Stability AI. https://stability.ai/stablediffusion. Version Stable Diffusion XL. Accessed: 2023-09-09. 2023.
- ► Wang, Z. et al. "Better diffusion models further improve adversarial training". In: ICML. 2023.
- Watson, J. L. et al. "De novo design of protein structure and function with RFdiffusion". In: *Nature* 620 (2023).
- Zhang, H. et al. "StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks". In: ICCV. 2017.