sparse_ho.models.WeightedLasso¶
- class sparse_ho.models.WeightedLasso(estimator=None)¶
Linear Model trained with weighted L1 regularizer (aka weighted Lasso).
The optimization objective for weighted Lasso is:
..math:
||y - Xw||^2_2 / (2 * n_samples) + \sum_i^{n_features} \alpha_i |wi|
- Parameters
- estimator: instance of ``sklearn.base.BaseEstimator``
An estimator that follows the scikit-learn API.
- __init__(estimator=None)¶
Methods
__init__([estimator])generalized_supp(X, v, log_alpha)Generalized support of iterate.
get_L(X)Compute Lipschitz constant of datafit.
get_beta(X, y, mask, dense)Return primal iterate.
get_full_jac_v(mask, jac_v, n_features)TODO
get_jac_residual_norm(Xs, ys, n_samples, ...)get_jac_v(X, y, mask, dense, jac, v)Compute hypergradient.
get_mask_jac_v(mask, jac_v)TODO
get_mat_vec(X, y, mask, dense, log_alpha)Returns a LinearOperator computing the matrix vector product with the Hessian of datafit.
proj_hyperparam(X, y, log_alpha)Project hyperparameter on an admissible range of values.
reduce_X(X, mask)Reduce design matrix to generalized support.
reduce_y(y, mask)Reduce observation vector to generalized support.
sign(x, log_alpha)Get sign of iterate.