sparse_ho.models.SimplexSVR¶
- class sparse_ho.models.SimplexSVR(estimator=None)¶
The simplex support vector regression without bias The optimization problem is solved in the dual.
It solves the SVR with probability vector constraints: sum_i beta_i = 1 beta_i >= 0
- Parameters
- estimator: sklearn
An estimator that follows the scikit-learn API.
- __init__(estimator=None)¶
Methods
__init__
([estimator])generalized_supp
(X, v, log_hyperparam)Generalized support of iterate.
get_L
(X)Compute Lipschitz constant of datafit.
get_dual_v
(mask, dense, X, y, v, log_hyperparam)Compute the dual of v
get_full_jac_v
(mask, jac_v, n_features)TODO
get_jac_residual_norm
(Xs, ys, n_samples, ...)get_jac_v
(X, y, mask, dense, jac, v)Compute hypergradient.
get_mat_vec
(X, y, mask, dense, log_C)Returns a LinearOperator computing the matrix vector product with the Hessian of datafit.
proj_hyperparam
(X, y, log_hyperparam)Project hyperparameter on an admissible range of values.
reduce_X
(X, mask)Reduce design matrix to generalized support.
reduce_y
(y, mask)Reduce observation vector to generalized support.
sign
(beta, log_hyperparams)Get sign of iterate.