sparse_ho.criterion.LogisticMulticlass¶
- class sparse_ho.criterion.LogisticMulticlass(idx_train, idx_val, algo, idx_test=None)¶
Multiclass logistic loss.
- Parameters
- idx_train: ndarray
indices of the training set
- idx_val: ndarray
indices of the validation set
- algo: instance of ``sparse_ho.base.AlgoModel``
A model that follows the sparse_ho API.
- idx_test: ndarray
indices of the test set
- Attributes
- dict_models: dict
dict with the models corresponding to each class.
- __init__(idx_train, idx_val, algo, idx_test=None)¶
Methods
__init__
(idx_train, idx_val, algo[, idx_test])get_val
(model, X, y, log_alpha, ...[, tol])Get value of criterion.
get_val_grad
(model, X, y, log_alpha, ...[, tol])Get value and gradient of criterion.
grad_total_loss
(all_betas, all_jacs, X, Y)Compute the gradient of the multiclass logistic loss.
proj_hyperparam
(model, X, y, log_alpha)Project hyperparameter on admissible range of values