sparse_ho.criterion.FiniteDiffMonteCarloSure¶
- class sparse_ho.criterion.FiniteDiffMonteCarloSure(sigma, finite_difference_step=None, random_state=42)¶
Smoothed version of the Stein Unbiased Risk Estimator (SURE).
Implements the iterative Finite-Difference Monte-Carlo approximation of the SURE. By default, the approximation is ruled by a power law heuristic [1].
- Parameters
- sigma: float
Noise level
- finite_difference_step: float, optional
Finite difference step used in the approximation of the SURE. By default, use a power law heuristic.
- random_stateint, RandomState instance, default=42
The seed of the pseudo random number generator. Pass an int for reproducible output across multiple function calls.
References
- 1
C.-A. Deledalle, Stein Unbiased GrAdient estimator of the Risk
(SUGAR) for multiple parameter selection. SIAM J. Imaging Sci., 7(4), 2448-2487.
- Attributes
- Finite differentiation Monte Carlo SURE relies on the resolution of 2
- optimization problems.
- mask0: array-like, shape (n_features,)
Boolean array corresponding to the non-zeros coefficients of the solution of the first optimization problem.
- mask02: array-like, shape (n_features,)
Boolean array corresponding to the non-zeros coefficients of the solution of the second optimization problem.
- dense: ndarray
Values of the non-zeros coefficients of the solution of the first optimization problem.
- dense2: ndarray
Values of the non-zeros coefficients of the solution of the second optimization problem.
- __init__(sigma, finite_difference_step=None, random_state=42)¶
Methods
__init__
(sigma[, finite_difference_step, ...])get_val
(model, X, y, log_alpha[, monitor, tol])Get value of criterion.
get_val_grad
(model, X, y, log_alpha, ...[, ...])Get value and gradient of criterion.
get_val_outer
(X, y, mask, dense, mask2, dense2)Compute the value of the smoothed version of the Stein Unbiased Risk Estimator (SURE).