sparse_ho.algo.Implicit¶
- class sparse_ho.algo.Implicit(max_iter=100, max_iter_lin_sys=100, tol_lin_sys=1e-06)¶
Algorithm to compute the hypergradient using implicit differentiation.
First the algorithm computes the regression coefficients beta, then the gradient is computed after resolution of a linear system on the generalized support of beta.
- Parameters
- max_iter: int (default=100)
Maximum number of iteration for the inner solver.
- max_iter_lin_sys: int (default=100)
Maximum number of iteration for the resolution of the linear system.
- tol_lin_sys: float (default=1e-6)
Tolerance for the resolution of the linear system.
- __init__(max_iter=100, max_iter_lin_sys=100, tol_lin_sys=1e-06)¶
Methods
__init__
([max_iter, max_iter_lin_sys, ...])compute_beta_grad
(X, y, log_alpha, model, ...)Compute beta and the hypergradient, with implicit differentiation.