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Résumé

Comprendre les maladies neurologiques modernes telles que la maladie d’Alzheimer
ou de Parkinson apparaît comme un défi majeur pour lequel les neuroscientifiques
s’appuient largement sur l’enregistrement et le traitement avancés de l’activité cérébrale.
En raison de leur caractère non invasif et de leur excellente résolution temporelle, la
magnéto- et l’électroencéphalographie (M/EEG) sont devenues des outils incontourn-
ables pour observer l’activité cérébrale. La reconstruction des signaux cérébraux à
partir des mesures M/EEG peut être considérée comme un problème inverse en grande
dimension mal posé. Les estimateurs classiques des signaux cérébraux sont basés sur la
résolution de problèmes d’optimisation composites. Ces estimateurs basés sur la parci-
monie ne sont actuellement pas massivement utilisés en neurosciences, principalement
en raison de leurs hyperparamètres de régularisation notoirement difficiles à régler. Un
des objectif de cette thèse est de fournir une méthode simple, rapide et automatique
pour calibrer les modèles linéaires parcimonieux.

Nous étudions d’abord certaines propriétés de la descente par coordonnée, qui est un
algorithme de pointe pour résoudre les problèmes d’optimisation composites «lisse +
non lisse séparable». En s’appuyant sur la théorie du lissage partiel, nous montrons que
la descente par coordonnée permet l’identification du modèle et la convergence linéaire
locale. Ces propriétés sont ensuite utilisées dans cette thèse pour l’optimisation des
hyperparamètres. Nous proposons également un schéma d’extrapolation d’Anderson,
andersoncd, pour accélérer efficacement la descente par coordonnée en pratique.

Nous explorons ensuite une approche statistique pour définir l’hyperparamètre de régu-
larisation des problèmes de type Lasso. Dans ce cas il existe une formule exacte pour
l’hyperparamètre de régularisation optimal pour la régression linéaire parcimonieuse.
Malheureusement, elle dépend du niveau de bruit réel, inconnu en pratique. Pour
éliminer cette dépendance, on peut recourir à des estimateurs pour lesquels le para-
mètre de régularisation ne dépend pas du niveau de bruit. Cependant, ces derniers
nécessitent de résoudre de difficiles problèmes d’optimisation «non lisse + non lisse».
Nous montrons que le lissage partiel préserve leurs propriétés statistiques, tout en faisant
que le problème d’optimisation puisse être résolu avec des techniques efficaces de des-
cente par coordonnée. Des expériences approfondies sur des données réelles de M/EEG
montrent l’intérêt de ces estimateurs sur des tâches visuelles et auditives.

Enfin, nous étudions la sélection d’hyperparamètres sous l’angle de l’optimisation à deux
niveaux. Elle englobe les techniques de sélection d’hyperparamètres les plus populaires
dans l’apprentissage automatique et les problèmes inverses comme le critère «hold-
out», la validation croisée, ainsi que certains proxies de l’estimateur du risque sans
biais de Stein. Cette approche repose sur des problèmes d’optimisation à deux niveaux
avec des problèmes internes non lisses, qui sont généralement résolus avec des méthodes
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d’ordre zéro, telles que la recherche sur grille ou la recherche aléatoire. Dans cette thèse,
nous présentons un algorithme efficace pour résoudre ces problèmes d’optimisation à
deux niveaux en utilisant des méthodes du premier ordre. Cela permet de calibrer
efficacement des modèles parcimonieux avec un grand nombre d’hyperparamètres.

Afin de promouvoir la diffusion scientifique et la reproductibilité, tous les algorithmes
développés dans cette thèse sont disponibles en ligne, avec des exemples et une doc-
umentation exhaustive. De plus, andersoncd a été implémenté dans la bibliothèque
python la plus populaire de traitement du signal cérébral, MNE, et est maintenant
l’algorithme par défaut pour le calcul des estimateurs de signaux parcimonieux. Les
algorithmes d’optimisation à deux niveaux devraient bientôt être intégrés au module
d’optimisation jaxopt de la bibliothèque de différentiation automatique jax.





Abstract

Tackling modern neurological diseases such as Alzheimer or Parkinson appears as a
major challenge for which neuroscientists extensively rely on advanced recording and
processing of brain activity. Due to non-invasiveness and excellent time resolution,
magneto- and electroencephalography (M/EEG) have emerged as tools of choice to
monitor brain activity. Reconstructing brain signals from M/EEG measurements can
be cast as a high dimensional ill-posed inverse problem. Usual estimators of brain sig-
nals involve challenging composite optimization problems. Because of their notoriously
hard to tune regularization hyperparameters, sparsity-based estimators are currently
not massively used in neuroscience. The goal of this thesis is to provide a simple, fast,
and automatic way to calibrate sparse linear models.

We first study some properties of coordinate descent, which is a state-of-art algorithm
to solve composite “smooth + nonsmooth separable” optimization problem. Relying
on the partial smoothness framework we show that coordinate descent achieves model
identification and local linear convergence. These properties are latter used in this thesis
for hyperparameter optimization. We also propose an Anderson extrapolation scheme,
andersoncd, to accelerate coordinate descent in practice.

We then explore a statistical approach to set the regularization parameter of Lasso-
type problems. A closed-form formula can be derived for the optimal regularization
hyperparameter of sparse penalized linear regressions. Unfortunately, it relies on the
true noise level, unknown in practice. To remove this dependency, one can resort to
estimators for which the regularization hyperparameter does not depend on the noise
level. However, they require to solve challenging “nonsmooth + nonsmooth” optimiz-
ation problems. We show that partial smoothing preserves their statistical properties,
while making the optimization problem amenable to efficient coordinate descent. Ex-
tensive experiments on real M/EEG data show the interest of these estimators on visual
and auditory tasks.

Finally we investigate hyperparameter selection through the lens of bilevel optimization.
It encompasses most popular hyperparameter selection techniques in machine learning
and inverse problems: hold-out, cross-validation and proxies of the Stein unbiased risk
estimator. This approach relies on bilevel optimization problems with nonsmooth inner
problems, that are usually solved with zeros-order methods, such as grid-search or
random-search. In this thesis we present an efficient algorithm to solve these bilevel
optimization problems using first-order methods. This enabled to efficiently calibrate
sparse models with large number of hyperparameters.

In order to promote scientific dissemination and reproducibility all the algorithms de-
veloped in this thesis are available online with examples and extensive documentation.
In addition, andersoncd has been implemented in the largest python brain signal pro-
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cessing package, MNE, and is now the default solver for sparse signal estimators. Al-
gorithms for bilevel optimization with nonsmooth inner optimization problems should
soon be implemented in the library jaxopt, which extends the automatic differentiation
library jax, and allows to differentiate solutions of optimization problems.
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General

, Equal by definition

[p] Set of integers from 1 to p included

Idn Identity matrix in Rn×n

Ai: ith row of matrix A

A:j jth column of matrix A

TrA Trace of A ∈ Rd×d TrA =
∑d

i=1Aii

A> Transpose of matrix A

Sp+ Set of p by p symmetric positive semidefinite
matrices

Sp++ Set of p by p symmetric positive definite matrices

‖·‖ Euclidean norm on vectors and matrices

〈·, ·〉 Euclidean inner product

‖·‖2 Spectral norm on matrices

‖·‖γ Norm induced by the vector γ ∈ Rp ‖β‖γ =
√∑p

j=1 γjβ
2
j

‖·‖A Norm induced by the matrix A ∈ Sn++ ‖β‖A =
√
β>Aβ

‖·‖S ,p Schatten p-norm on matrices for p ∈ [1,+∞]

‖·‖∗ Nuclear norm

‖·‖2,1 Row-wise `2,1-mixed norm on matrices ‖A‖2,1 =
∑p

j=1‖Aj:‖

‖·‖1,2 Column-wise `1,2-mixed norm on matrices ‖A‖1,2 =
∑n

i=1‖A:i‖

‖·‖2,∞ Row-wise `2,∞-mixed norm on matrices ‖A‖2,∞ = maxj∈[p]‖Aj:‖

u� v Coordinatewise multiplication of vectors u and v

u�A The row wise multiplication between a vector u and
a matrix A

ρ(A) Spectral radius of the matrix A

κ(A) Condition number of the matrix A

(ej)
p
j=1 Canonical base of Rp

supp(β) Support of β ∈ Rp
{
j ∈ [p] : βj 6= 0

}
Sc Complement of the set S

B(x, ε) Ball of center x and radius ε

Jψ(x) Jacobian of the function ψ at x
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Convex analysis

proxg(x) Proximity operator of g at x arg miny∈Rp
1
2‖x− y‖2 + g(y)

aff(C) Affine hull of the convex set C

ri(C) Relative interior of the convex set C

ιC(x) Indicator function of the set C at x ιC(x) =

0 if x ∈ C
+∞ otherwise .

dom(f) Domain of the function f {x ∈ Rp : f(x) < +∞}

∂f(x) Subdifferential of the function f at x ∂f(x) = {s ∈ Rp : f(y) ≥
f(x)+〈s, y−x〉,∀y ∈ dom(f)}

f∗(u) Fenchel conjugate of the function f at u supx〈u, x〉 − f(x)

f1� f2(x) Infimal convolution of f1 and f2 at x inf{f1(x−y)+f2(y) : y ∈ Rd}

L Lipschitz contant of ∇f

Lj Lipschitz contant of the function ∇jf ‖∇jf(x+ hej)−∇jf(x)‖ ≤
Lj |hj |, ∀x ∈ Rp, h ∈ R

For S1 and S2 ∈ Sn+, S1 � S2 if S1 − S2 ∈ Sn+. When we write S1 � S2 we implicitly
assume that both matrices belong to Sn+.
A function is said to be smooth if it has Lipschitz gradients. Let f be a L-smooth
function. Lipschitz constants of the functions ∇jf are denoted by Lj ; hence for all
x ∈ Rp, h ∈ R:

|∇jf(x+ hej)−∇jf(x)| ≤ Lj |h| .

A function h : R→ R∪{+∞} is said to be proper if dom(h) = {x ∈ R : h(x) < +∞} 6=
∅), and closed if for any α ∈ R, the sublevel set {x ∈ dom(h) : h(x) ≤ α} is a closed
set.
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1.1 Model selection for the M/EEG inverse problem

Over the last century, neuroscience has led to significant advances in brain understand-
ing. Breakthroughs include functional localization (Penfield and Rasmussen, 1950),
better comprehension of diseases such as epilepsy (Penfield and Jasper, 1954), or pre-
cise description of the visual cortex (Hubel and Wiesel, 1962). Much remains to be
understood and tackling modern brain diseases appears as a major challenge. To this
aim, neuroscientific studies extensively rely on advanced recording and processing of
brain activity.

1.1.1 Neuroimaging

What is brain activity? The nervous system is composed of a complex network of
billions of neurons. Each neuron is composed of a cell body (the soma), dendrites, and
an axon. The variation of the ionic concentration at the soma’s membrane produces
an electrical potential. When this potential rapidly rises and falls, an action potential
can be triggered, locally propagating potential variations along the axons to ten to
thousands neighboring neurons. This leads to excitatory postsynaptic potentials in the
dendrites (Baillet et al., 2001). The goal of neuroimaging is to record brain activity, for
example through the measure of these simultaneous and localized neural activations.

How to measure the brain activity? Neuroimaging, or brain imaging, is defined
as the direct or indirect imaging of the nervous system structure. Main neuroima-
ging techniques include electrocorticography, electro- and magnetoencephalography and
functional magnetic resonance imaging:
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(a) ECoG. (b) EEG. (c) MEG.

Figure 1.1 – Multiple neuroimaging modalities. In electrocorticography (left,
Blausen 2014), a grid of sensors is placed onto the brain surface. For electroencephalo-
graphy (middle1) and magnetoencephalography (right, image from the National Insti-
tute of Mental Health), sensors are placed at or close to the head surface and no surgery
is needed.

• Electrocorticography (ECoG, Jasper and Penfield 1949) measures the electrical
field produced by the active neurons, with electrodes directly placed in the head,
on cortical surfaces (Figure 1.1a). ECoG leads to signals with very good spatial
and temporal resolutions, approximately 1 mm and 1 ms, but is extremely invasive:
a part of the skull must be removed in order to place electrodes on cortical surfaces.

• Electro- and magnetoencephalography (EEG Berger 1929, and MEG Cohen
1968) measure the electric and magnetic fields at the head surface (Figures 1.1b
and 1.1c). After an excitatory postsynaptic potential is triggered, all synchronized
neurons produce electric and magnetic fields, with sufficiently large amplitudes to
be measured by sensors at the head surface. Measurements are very noisy (Fig-
ure 1.2a) but have an excellent time resolution, around 1 ms. Spatial resolution of
M/EEG is unclear and seems to be more related to the reconstruction problems
difficulty than the techniques themselves. As opposed to ECoG, EEG and MEG
are non invasive techniques: no brain surgery is required.

• Functional magnetic resonance imaging (fMRI) measures changes in brain blood
flow: the latter is coupled to neuronal activity (Logothetis et al., 2001) and in-
creases in active brain areas. This blood flow, called haemodynamic response, leads
to higher concentrations in oxygenated hemoglobin, which can be detected using
blood oxygen-level-dependent (BOLD) signals (Ogawa et al., 1990). As opposed
to EEG and MEG measurements, fMRI is an indirect technique that measures
blood flow as a proxy for brain activity. fMRI BOLD signals typically have a high
spatial resolution, from 1 to 3 mm, but a poor temporal resolution, from 1 to 3 s.

With their outstanding temporal resolution, MEG and EEG are tools of choice to
observe and understand brain activity. In the next paragraphs we detail M/EEG data
specificities and present a mathematical modelling for neuroimaging with M/EEG.

Sensors. M/EEG recordings typically involve around 300 sensors, each of which records
the amplitude of the electric or magnetic field at a different location at the head surface
or periphery. There are three types of sensors (see Figure 1.2a):

1Image is in the public domain: https://commons.wikimedia.org/wiki/File:EEG_cap.jpg.

https://commons.wikimedia.org/wiki/File:EEG_cap.jpg
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Figure 1.2 – M/EEG data and brain signals we aim at reconstructing. Amp-
litude of the electric field, magnetic field, and gradient of the magnetic field (left) at the
head surface or periphery. Amplitude of the current in two areas (middle), and their
location (right). Data comes from the MNE software (Gramfort et al., 2014).

• Electrodes, recording the amplitude of the electric field (in µV).

• Magnetometers, recording the amplitude of the magnetic field (in fT), which is
eight orders of magnitude smaller than the Earth’s magnetic field.

• Gradiometers, recording the amplitude of the gradient of the magnetic field (in
fT/cm).

Figure 1.2a shows M/EEG measurements after auditory stimulation at time 0 (dashed
red line). Each sensor provides a time series of 400 to 500 ms with a sampling rate of
600 Hz (leading to around 50 time points after resampling): M/EEG data recordings
consist in a matrix Y of size number of sensors︸ ︷︷ ︸

n≈300

× number of time points︸ ︷︷ ︸
T≈50

.

Sources. Simultaneous postsynaptic potentials can be modelled as an equivalent dipole
at the macroscopic scale (Williamson et al., 2013). Source candidates are chosen on a
discrete mesh of the cortical surface (Nunez and Silberstein, 2000). The goal is then to
reconstruct the electric current intensity amplitude (Figure 1.2b) of the equivalent dipole
in each point on the mesh (Figure 1.2c). The equivalent dipole direction is assumed to
be given, and normal to the cortical surface (Lin et al., 2006a). To summarize, our goal
is to recover a matrix B∗ of size number of source candidates︸ ︷︷ ︸

p≈104

× number of time points︸ ︷︷ ︸
T≈50

,

where each row is a time series with T time points, corresponding to the amplitude
of the electric current on the cortical surfaces along the cognitive experiment (Baillet
et al., 2001).

Forward model. Physics of the problem leads to a direct relation between the neural
activity we aim at reconstructing (Figures 1.2b and 1.2c) and the recorded M/EEG sig-
nals (Figure 1.2a). The biomagnetic forward model is well-posed (Plonsey and Heppner,
1967; Hämäläinen et al., 1993): if one knows the number of active sources, their amp-
litudes and localizations in the brain, one can determine the amplitudes of the observed
M/EEG signals. We use the quasi-static approximation (Tripp, 1983; Heller and van
Hulsteyn, 1992; Hämäläinen et al., 1993): propagation of the electric and magnetic fields
is supposed to be instantaneous (no delayed potentials). This leads to a linear relation
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Figure 1.3 – Influence of the number of trials. Amplitude of the electric field
measured at the surface of the head, as a function of time, for multiple numbers of
averaged trials Y (l). With only one trial (left), one cannot see a brain response, after
the auditory stimulation at time 0 (dashed red line). When the number of trials increases
(middle and right), one can observe a brain response after the stimulation.

(Hämäläinen and Ilmoniemi, 1994) between the observed signals amplitudes Y ∈ Rn×p
and the electrical current amplitudes in the brain B∗ ∈ Rp×T , through a design mat-
rix X ∈ Rn×p (also called forward operator). In addition, signals are corrupted with
additive noise E ∈ Rn×T :

Y = XB∗ + E . (1.1)

This linear model is frequent in machine learning and inverse problems. In the next
paragraph, we present some aspects of it specific to M/EEG data.

Signal characteristics. First, M/EEG recordings are very noisy: noise and signal
amplitudes are of the same order of magnitude (Figure 1.3, left). In order to decrease
the noise level, a common procedure is to repeat the same cognitive experiment multiple
times. The brain response B∗ is assumed to be the same for all trials. M/EEG data is
thus composed of r ∈ N measurements Y (l) ∈ Rn×T :

Y (l) = XB∗ + E(l) , (1.2)

with E(l) ∈ Rn×p, l ∈ [r]. Data is then averaged across the repetitions Y (l), called trials
in M/EEG, to obtain a better signal-to-noise ratio (Figure 1.3). Another specificity of
M/EEG data is that the additive noise is usually not Gaussian i.i.d., but correlated.
In Chapter 5 we will take advantage of the repetitions structure to better handle the
correlated Gaussian noise.

Equipped with this mathematical modelling of M/EEG data and brain sources, we now
recall some usual techniques to reconstruct neural activity from M/EEG recordings.

1.1.2 Linear inverse problem

With M/EEG data we have access to the amplitudes of the electric and magnetic fields
at the surface of the head, yet we seek to recover the intensity of the current inside
the brain. There exists three main types of approaches to identify sources responsible
for observed M/EEG signals: parametric methods, scanning methods, and imaging
methods (Table 1.1).



1.1. THESIS MOTIVATION 25

Method Parametric Scanning Scanning Imaging
Beamforming MUSIC

Predefined number of sources yes no yes no
Predefined grid of locations no yes yes yes

Table 1.1 – Imaging techniques requirements.

Parametric methods (dipole fitting, Scherg and Cramon 1985; Scherg 1990) assume
that observed signals are produced by a small and fixed number of active sources.
Then source locations and orientations are determined minimizing a criterion. This
approach leads to challenging non-convex optimization problems, which can be solved
using clustering methods, simulated annealing, or genetic algorithms (Uutela et al.,
1998). In addition to complex algorithms, no clear stopping criteria, and sensitive
initialization, the number of active sources can also be hard to estimate in advance.

Scanning methods (beamforming Mosher et al. 1999 and MUSIC Mosher and Leahy
1998) evaluate the contribution of each source on a discrete grid, scanning the source
space to determine optimal active source locations (Hillebrand et al., 2005; Sekihara
et al., 2002). No interference is assumed between the sources, and their contributions
are computed independently using correlations between each brain location and the
observed signals. More refined methods combine beamforming with signal subspace
estimation, leading to MUSIC approaches (Mosher and Leahy, 1999).

Imaging methods rely on a fixed predefined grid of sources. As opposed to scanning
methods, they jointly estimate amplitudes of the currents in all potential brain source
locations. This leads to a severely ill-posed inverse problem: the number of sensors (the
number of samples from a statistical point of view, around 102) is orders of magnitude
lower than the number of potential source locations (around 104). This leads to non-
unique solutions, highly sensitive to noise corruption: to circumvent these problems,
one can incorporate some prior knowledge on the desired sources to recover. This prior
can be enforced through constrained optimization, regularized optimization, or using
Bayesian statistics (Gelman et al., 2013). Most popular priors in M/EEG include `2
regularization (called MNE in the neuroimaging community Hämäläinen and Ilmoniemi
1994), weighted `2 regularization (Lin et al., 2006b), `1 regularization (Tibshirani, 1996;
Ou et al., 2009; Gramfort et al., 2012), and iterative reweighting techniques (Candès
et al., 2008; Strohmeier et al., 2014).

In the rest of this thesis we focus on imaging methods with sparsity inducing priors,
e.g., `1 or `2,1 penalties, and more generally with nonsmooth regularization. A wealth
of such imaging techniques has been proposed in the literature, but unfortunately only
very few are actually used in practice: they often lack of efficient and automatic ways
to tune their hyperparameters. A notable example in M/EEG is the multitask Lasso
(Argyriou et al., 2008; Obozinski et al., 2011):

B̂(λ) ∈ arg min
B∈Rp×T

1

2
‖Y −XB‖2 + λ

p∑
j=1

‖Bj:‖︸ ︷︷ ︸
,‖B‖2,1

. (1.3)

Modern block coordinate descent algorithms (Tseng and Yun, 2009a; Wright, 2015;
Massias et al., 2020b) efficiently solve Problem (1.3) and selection of the regularization
hyperparameter now appears as the main obstacle for these estimators to be massively
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(a) λ = 0.85λmax (b) λ = 0.82λmax (c) λ = 0.80λmax (d) λ = 0.75λmax

Figure 1.4 – Hyperparameter selection for real M/EEG data. Brain source
locations (in red) found in the left (top) and in the right (bottom) hemispheres, using
multitask Lasso Problem (1.3), for multiple values of λ. Each column corresponds to
one value of the hyperparameter λ. Which λ to pick? How to automatically select λ?

used by neuroscientists. Figure 1.4 represents estimated active brain locations found
when solving Problem (1.3) for multiple values of the regularization parameter λ. Brain
source locations are taken as the non zeros rows of the estimator B̂(λ) defined in Prob-
lem (1.3), where λ is chosen as a fraction of λmax , ‖X>Y ‖2,∞ (the largest value of
the parameter producing non-trivial solutions). Small variations in λ can lead to dif-
ferent numbers of active sources and brain locations. Ignoring the temporal aspect, in
Chapter 6 we focus on the setting where the regularization parameter λ trades data
fidelity against prior:

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) , f(β) + λg(β) , (1.4)

where f is a convex smooth function (the data fit), and g a convex, proper, lower
semicontinuous and usually nonsmooth function (the regularizer).

Figure 1.4 highlights the importance of model selection for sparse linear inverse prob-
lems. Hence, in the next section we review some usual procedures to select the regular-
ization hyperparameter λ for estimators based on Problem (1.4).

1.1.3 Hyperparameter selection for sparse models

The hyperparameter selection problem can be tackled in various frameworks. Most
of them can be fitted in three categories: the statistical route, Bayesian statistics, and
hyperparameter optimization. In this section we assume to have access to a target vector
y ∈ Rn, and a design matrix X ∈ Rn×p.
The statistical route. The Lasso (Tibshirani, 1996):

β̂(λ) ∈ arg min
β∈Rp

1

2
‖y −Xβ‖2 + λ‖β‖1 , (1.5)

and its variations (Zou and Hastie, 2005; Koh et al., 2007; Obozinski et al., 2011; Simon
et al., 2013), led to a broad literature for hyperparameter tuning (Lounici, 2008; Lounici
et al., 2009; Bickel et al., 2009; Belloni et al., 2011). Under the exact sparse linear model
assumption (Lounici, 2008, Ass. 1)

y = Xβ∗ + ε , with ε ∼ N (0, σ∗2 Idn), β∗ ∈ Rp, ‖β∗‖0 ≤ s, for some s ∈ N , (1.6)
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(a) Synthetic data.

Dataset name Maximal sparsity
leukemia 0

breast cancer 0
colon cancer 0
madelon 0

colon cancer 0
covtype 0

(b) Real data.

Figure 1.5 – Maximal sparsity that can theoretically be recovered assuming mutual
incoherence in Equation (1.7) is displayed for multiple values of number of samples and
number of features (left), and for multiple real-life datasets (right). For the synthetic
data, entries of the design matrix X are drawn i.i.d. following a Gaussian distribution
of mean 0 and variance 1. Real datasets are taken from libsvm (Chang and Lin, 2011)2.

and under the mutual incoherence hypothesis on the design matrix X (Lounici, 2008,
Ass. 2)

‖X:j‖ = 1 , and max
j′ 6=j
|X>:j′X:j | ≤ 1

7αs , ∀j ∈ [p], for some constant α > 1 , (1.7)

one can show that if the regularization parameter λ is chosen as

λ = A

√
log p

n
σ∗ , with A ≥ 2

√
2 , (1.8)

then the regression coefficients are well estimated, for some C > 0, with high probability

‖β̂ − β∗‖∞ ≤ C
√

log p

n
σ∗ . (1.9)

Under the additional hypothesis that the amplitude of the true regression coefficients
β∗ is “large enough”, it is possible to show that their sign is recovered with high prob-
ability (Lounici, 2008, Thm. 2). The presented properties can be generalized to other
estimators, with multiple data fitting terms and penalties (van de Geer, 2016, Chap. 6
and 7). However, the statistical route has multiple weaknesses:

(i) It requires the knowledge of the true noise level σ∗. This can be fixed using pivotal
estimators (Belloni et al., 2011) as we will detail in Chapter 4. Note also than
one can estimate the noise level σ∗ in M/EEG recordings (Ledoit and Wolf, 2004;
Engemann and Gramfort, 2015; Cai et al., 2021).

(ii) Although the mutual incoherence hypothesis in Equation (1.7) is not a necessary
condition for support recovery, it is very strong and generally does not hold on
real data (Figure 1.5).

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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To summarize, the statistical route relies on restrictive hypotheses and quantities which
are typically unknown in practice: Lasso users still have to resort to other techniques
to select the hyperparameter λ.

Other techniques involving Bayesian statistics (Kaipio and Somersalo, 2006; Bolstad
and Curran, 2016) do not rely on the mutual incoherence hypothesis and provide mul-
tiple ways to set the regularization parameter λ in the hierarchical Bayesian framework
(Molina et al., 1999; Sato et al., 2004).

Hierarchical Bayesian modeling. In this approach the regularization parameter is
incorporated to the model: a distribution p(λ) has to be chosen on the hyperparameter
λ. The joint probability distribution writes:

p(β, λ|y) ∼ p(y|β, λ)p(β|λ)p(λ) (1.10)

∼ exp
(
−f(β)− λg(β) + log p(λ)

)
/C(λ) . (1.11)

One can resort to multiple inference techniques to estimate the regression coefficients β̂
and the regularization parameter λ̂ (Table 1.2):

• One can jointly compute β̂ and λ̂ using a full maximum-a-posteriori approach
(full-MAP, Calvetti and Somersalo 2008; Calvetti et al. 2009; Lucka 2012):

(β̂, λ̂) ∈ arg max
β,λ

p(β, λ|y) . (1.12)

Note that the constant C(λ) =
∫

exp(−λg(β))dβ (which depends on λ) of the
probability distribution in Equation (1.11) is unknown and can be hard to es-
timate. For some specific models, a closed-form formula can be derived (Pereyra
et al., 2015), otherwise it is ignored (Bekhti et al., 2018), leading to alternate
sampling schemes, where one successively samples from β and λ.

• One can marginalize with respect to β (Tipping, 2001; Wipf and Rao, 2004; Wipf
and Nagarajan, 2009; Zhang and Rao, 2011):

λ̂ ∈ arg max
λ

p(λ|y) (1.13)

λ̂ ∈ arg max
λ

∫
p(β, λ|y)dβ , (1.14)

and then infer the regression coefficients β̂(λ) with usual optimization tools. This
inference is also referred to as λ maximum-a-posteriori (λ-MAP), type-II likelihood
or empirical Bayes because the prior p(β|λ) is learned from the data. Integrals
in Equation (1.14) can be intractable: one can resort to expectation-minimization
(Dempster et al., 1977), or variational inference (Jordan et al., 1999; MacKay,
2003; Friston et al., 2008) to compute them.

• One can marginalize with respect to λ (Figueiredo, 2001; Cotter et al., 2005;
Seeger and Wipf, 2010; Pereyra et al., 2015):

β̂ ∈ arg max
β

p(β|y) (1.15)

β̂ ∈ arg max
β

∫
p(β, λ|y)dλ . (1.16)

This approach is sometimes referred to as β maximum-a-posteriori (β-MAP, Wipf
and Nagarajan 2009, Sec. 4).
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Full-MAP λ-MAP β-MAP MLE

β̂, λ̂ ∈ arg max
β,λ

p(β, λ|y) λ̂ ∈ arg max
λ

p(λ|y) β̂ ∈ arg max
β

p(β|y) λ̂ ∈ arg max
λ

p(y|λ)

Table 1.2 – Bayesian hyperparameter selection inferences.

• Previously presented Bayesian approaches require to specify a probability distri-
bution on λ. Recent advances in sampling theory made it possible to remove this
modeling: no probability distribution is specified on λ, it is learned from the data.
The maximum likelihood estimator (MLE) writes:

λ̂ = arg max
λ

p(y|λ) (1.17)

= arg max
λ

∫
p(y|β)p(β|λ)dβ . (1.18)

Relying on state-of-the-art proximal Monte-Carlo Markov chain methods (Durmus
and Moulines, 2016; Durmus et al., 2018; Durmus and Moulines, 2019) Vidal et al.
(2020); Bortoli et al. (2020) made it possible to sample efficiently from p(y|λ),
through an alternated sampling scheme. Once λ has been computed, one can
access β̂(λ) by solving Problem (1.4) with usual convex optimization tools.

To conclude, Bayesian approaches are interpretable, flexible, and allow to incorporate
prior knowledge in the regularization parameter λ with hierarchical approaches, or to
directly use data to select the regularization parameter. The main disadvantages of
these techniques are practical:

(i) Usual hyperpriors on λ are parametric and introduce new hyperparameters that
have to be selected.

(ii) They lead to non-convex problems for which convergence toward a global minimum
might depend on the initialization.

(iii) In addition to the lack of clear stopping criteria, convergence speed of samplers
can be dramatically affected by other hyperparameters, such as stepsizes, or ini-
tializations (see for instance Vidal et al. 2020, Fig. 3.b).

Hyperparameter optimization. In machine learning the most popular approach
for hyperparameter selection is hyperparameter optimization (Kohavi and John, 1995;
Hutter et al., 2015; Feurer and Hutter, 2019): one selects the hyperparameter λ such
that the regression coefficients β̂(λ) minimize a given criterion C : Rp → R. Here C should
ensure good generalization, or avoid overcomplex models. Common examples include
the hold-out loss (Devroye and Wagner, 1979), the cross-validation loss (CV, Stone and
Ramer 1965), the AIC (Akaike, 1974), BIC (Schwarz, 1978) or SURE (Stein, 1981)
criteria. Formally, the hyperparameter optimization problem is a bilevel optimization
problem (Bracken and McGill, 1973; Candler and Norton, 1977; Colson et al., 2007):

λ̂ ∈ arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(1.19)
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The most famous criterion may be the hold-out loss (Devroye and Wagner, 1979). Data
(X, y) is split in two sets: the training set (Xtrain, ytrain), on which the model in trained,
and the validation set (Xval, yval), on which the prediction quality of β̂(λ) is evaluated.
If (Xi:, yi) are i.i.d., (Xval, yval) plays the role of “unseen” new data. For the Lasso it
writes

λ̂ ∈ arg min
λ∈R

1

2
‖yval −Xvalβ̂(λ)‖2

s.t. β̂(λ) ∈ arg min
β∈Rp

1

2
‖ytrain −Xtrainβ‖2 + λ‖β‖1 .

(1.20)

Hold-out relies on one split of the data, which leads to one estimate of the risk. Cross-
validation principle is to use multiple splits to create multiple estimators of the risk,
and then average it. Multiple cross-validation procedures exist (Arlot and Celisse, 2010,
Sec. 4.3), most popular include leave-one-out (Stone, 1974; Allen, 1974), leave-p-out
(Shao, 1993; Zhang, 1993) or K-fold cross-validation (Geisser, 1974) which is the most
common in machine learning. Data (X, y) is partitioned into K ∈ N∗ hold-out datasets
(Xtraink , ytraink), k ∈ [K]. The regularization parameter λ is then chosen to minimize
the averaged squared norm of the errors

λ̂ ∈ arg min
λ∈R

1

K

K∑
k=1

‖yvalk −Xvalk β̂(λ,k)‖22

s.t. β̂(λ,k) ∈ arg min
β∈Rp

1

2
‖ytraink −Xtrainkβ‖22 + λ‖β‖1, ∀k ∈ [K] .

(1.21)

Cross-validation is well-suited when the “samples” (Xi:, yi) are assumed to be i.i.d.,
which is often not the case for inverse problems, and definitely not the case for the
M/EEG inverse problem. In addition, if the goal is model selection, i.e., recovering the
exact support of the true coefficients β∗, then some cross-validation procedures were
shown to be inconsistent: they select all active variables in β∗, but also select some
additional irrelevant variables (Shao, 1993, 1997).

This is why other criteria, such as the Stein unbiased risk estimator (SURE, Stein
1981), are more popular in the inverse problem literature (Galatsanos, 1992; Donoho
and Johnstone, 1995; Zhang and Desai, 1998; Blu and Luisier, 2007; Pesquet et al.,
2009; Vaiter et al., 2013). It is an unbiased estimator of the mean squared error, which
tends to penalize overcomplex models through the degree of freedom (dof) (Efron, 1986;
Deledalle et al., 2014, Sec. 2.1). The SURE criterion writes

SURE(β) = ‖y −Xβ‖2 − σ∗2 Tr(X>X) + 2dof(β) . (1.22)

Unfortunately the degree of freedom is not always available in closed-form or differenti-
able in β. To circumvent these problems, multiple SURE proxies have been developed:
finite-difference SURE (Ye, 1998; Shen and Ye, 2002), Monte-Carlo SURE (Ramani
et al., 2008), iterative differentiation Monte-Carlo SURE (Vonesch et al., 2008), or
finite-differentiation Monte-Carlo SURE (Deledalle et al., 2014). For the Lasso, the
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latter approximation yields the following problem:

λ̂ ∈ arg min
λ∈R

1

2
‖y −Xβ̂(λ,1)‖2 +

σ∗2

ε

〈
β̂(λ,2) − β̂(λ,1), X>δ

〉
s.t. β̂(λ,1) ∈ arg min

β∈Rp

1

2
‖y −Xβ‖2 + λ‖β‖1

β̂(λ,2) ∈ arg min
β∈Rp

1

2
‖y + εδ −Xβ‖2 + λ‖β‖1 ,

(1.23)

with ε > 0 and δ ∼ N (0, Idn). As the statistical route, the SURE requires the knowledge
of the true noise level σ∗. Finite-differentiation Monte-Carlo SURE also introduces a
new hyperparameter ε, for which theoretical guidelines exist (Deledalle et al., 2014, Sec.
5.1).

Problems (1.20), (1.21) and (1.23) are bilevel optimization problems with nonsmooth
inner optimization problems. These problems can be challenging to solve, especially as
the dimension of the hyperparameter becomes larger. So far we have considered models
with one hyperparameter λ, but more refined models rely on multiple hyperparameters,
for instance the sparse-group Lasso (Simon et al., 2013), elastic-net (Zou and Hastie,
2005) or the weighted Lasso (Lasso with one regularization parameter per feature, Zou
2006). In Chapter 6 we propose efficient first-order techniques to solve Problem (1.19)
with a potential large number of hyperparameters.

One of the main goal of this thesis is to provide a fast way to select the regularization
parameter λ. Most hyperparameter selection techniques rely on efficient resolutions of
Problem (1.4), solved with coordinate descent: we also use it intensively (Chapters 2,
3, 5 and 6). The next section proposes an introduction to coordinate descent.

1.2 Coordinate descent

Coordinate descent is a variant of gradient descent, which updates the iterates one
coordinate at a time (Tseng and Yun, 2009b). Coordinate descent is mostly used in
practice in its proximal variation, on composite “smooth + separable nonsmooth” op-
timization problems:

min
β∈Rp

f(β) +

p∑
j=1

gj(βj) , (1.24)

where f is a smooth convex function, and the functions gj are convex, proper, lower
semicontinuous and usually nonsmooth. Proximal coordinate descent has been applied
to numerous machine learning problems (Shalev-Shwartz and Zhang, 2013a), in partic-
ular the Lasso (Tibshirani, 1996), the elastic net (Zou and Hastie, 2005) or the sparse
logistic regression (Ng, 2004). It is currently the state-of-art default algorithm in preem-
inent machine learning packages such as scikit-learn (Pedregosa et al., 2011), glmnet
(Friedman et al., 2009), libsvm (Fan et al., 2008) or lightning (Blondel and Pedregosa,
2016). Coordinate descent can also be applied on group-type penalties (Tseng and Yun,
2009a; Obozinski et al., 2011; Simon et al., 2013), and leads to good empirical perform-
ance with nonsmooth nonconvex penalties gj (Breheny and Huang, 2011; Mazumder
et al., 2011; Ge et al., 2019).
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For exposition purposes we present the algorithms on an ordinary least squares problem
(OLS), with a design matrix X ∈ Rn×p and a target vector y ∈ Rn:

min
β∈Rp

f(β) ,
1

2
‖y −Xβ‖2 . (1.25)

We suppose that X>X � 0, we define µ as the smallest eigenvalue of X>X, and L its
largest, L , ‖X‖22. In Section 1.2.1 we give some intuitions on why coordinate des-
cent achieves good performance, and explain implementation details. To give insights,
we compare coordinate descent against gradient descent, and instantiate all algorithms
on the simpler Problem (1.25). In Section 1.2.2 we recall some theoretical results on
coordinate descent on quadratics. In particular we provide a proof of the linear con-
vergence of cyclic coordinate descent for Problem (1.25), which is a simpler case of the
proof of Theorem 2.16 from Chapter 2. We also remind under which conditions coordin-
ate descent outperforms gradient descent. Section 1.2.3 presents the generalization of
coordinate descent for composite optimization Problem (1.24). Readers can refer to
Wright (2015); Shi et al. (2016) for comprehensive introductions on coordinate descent.

1.2.1 Introduction and intuitions

In this section we provide numerical intuitions on the success of coordinate descent. We
first remind some properties of gradient descent.

Gradient descent. For Problem (1.25), gradient descent iterations with step size
1/L read, for β ∈ Rp:

β ← β − 1

L
X>(Xβ − y) . (1.26)

Proposition 1.1. Gradient descent with step size 1/L converges linearly with rate 1−
µ/L < 1.

Proof One update of gradient descent writes:

β ← (Idp−
1

L
X>X)︸ ︷︷ ︸

,TGD

β − 1

L
X>y . (1.27)

The spectral radius of TGD has a closed-form: ρ(TGD) = 1 − µ/L < 1, thus gradient
descent linearly converges to the unique fixed point of β 7→ β − 1

LX
>(Xβ − y), which

is also the minimizer of Problem (1.25) (Polyak, 1987, Thm. 1, Sec. 2.1.2).

In particular, the condition number L/µ of the Hessian H , X>X of Problem (1.25)
controls the convergence of the gradient descent algorithm. We will see that coordin-
ate descent convergence rate is governed by other quantities (Proposition 1.10), the
Lipschitz constants Lj of ∇jf|βj , defined as follows:

for all β ∈ Rp, h ∈ R, |∇jf(β + hej)−∇jf(β)| ≤ Lj |h| .
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Figure 1.6 – Five iterations of gradient descent (left in blue) and cyclic coordinate
descent (right in red) to minimize the quadratic function f(β1, β2) = 7β2

1 +6β1β2 +8β2
2 .

Contour lines of the function f are in blue. Each algorithm starts at point (8,−6) and
converges toward the minimizer (0, 0). The darker the point, the larger the iteration
number. From a computational point of view, two updates of coordinate descent are
equivalent to one update of gradient descent (see Algorithm 1.4).

Coordinate descent. The core idea of coordinate descent is to solve an optimization
problem through the resolution of smaller dimension subproblems. These subproblems
are usually easier and cheaper to solve. More formally, for a function f : Rp → R,
the idea is to minimize successively one dimensional functions f|βj : R → R, updating
only one coordinate at a time, while the others remain unchanged. There exist many
variants of coordinate descent algorithms, the main branchings being:

• The index selection. Many procedures exist to select the coordinate to update,
indices can be selected:

– Cyclically in the set [p] , {1, . . . , p} (Tseng and Yun, 2009a).

– At random following a given distribution (Nesterov, 2012).

– Greedily, to optimize a given criterion (Nutini et al., 2015): largest decrease
of the objective function, or largest gradient norm (Gauss-Southwell rule,
Southwell 1940).

• The update rule. The chosen coordinate can be updated in multiple manners:

– Exact minimization of the function f|βj (Tseng, 2001).

– Coordinate gradient descent update (Tseng and Yun, 2009a).

Tables 1.3 and 1.4 summarize index selection and update rule variants. In this intro-
duction we focus on cyclic coordinate descent with coordinate gradient descent update
rule: for Problem (1.25), for the jth coordinate, with step size 1/Lj , it reads

βj ← βj −
1

Lj
X>:j (Xβ − y) . (1.28)
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Index selection Description

Cyclic j = (k mod p) + 1

Random j is chosen randomly
(sampling with in [p] following
replacement) P(j = j′) = 1/Lj′

Gauss-Southwell j = arg maxj′‖∇j′f(β)‖

Table 1.3 – Index selection.

Update rule Description

Exact βj ← arg minβj f|βj

Coordinate
gradient βj ← βj − 1

Lj
∇jf(β)

descent

Table 1.4 – Update rule.

Five iterations of gradient descent and cyclic coordinate descent on a quadratic function
are displayed in Figure 1.6. While gradient descent iterates move towards the minimum
orthogonally to the level sets, coordinate descent iterates move successively along the
axes β1 and β2. On this example the values of the coordinate specific Lipschitz constants
of ∇jf|βj are L1 = 7, L2 = 8, and the the global Lipschitz constant is larger: L ≈
10.5: coordinate descent uses larger coordinate specific stepsizes than gradient descent.
Figure 1.8 will underline stepsizes importance. First we show that for Problem (1.25)
Lj has a closed-form formula.

Proposition 1.2. With f(β) = 1
2‖y −Xβ‖2, the best Lipschitz constant Lj of ∇f|βj

is:

Lj = ‖X:j‖2 . (1.29)

Proof The gradient of the jth coordinate of f writes

∇jf(β) = X>:j (Xβ − y) .

Then the gradient of ∇jf(β) restricted to βj writes

∇2
j,jf(β) = X>:jX:j = ‖X:j‖2 .

Since ∇jf|βj is differentiable with continuous derivatives, ‖X:j‖2 is a valid Lipschitz
constant for ∇jf|βj .

Examples, algorithmic and implementation details. Algorithms 1.1 to 1.3 are
the instantiations of gradient descent, Kaczmarz algorithm (Kaczmarz 1937; Strohmer
and Vershynin 2009, which can be seen as stochastic gradient descent SGD, Robbins
and Monro 1951 with constant step size), and coordinate gradient descent on the least
squares Problem (1.25).

From an algorithmic point of view, one naive update of coordinate descent (Al-
gorithm 1.3) has a O(np) computation cost per iteration, as it requires computing
Xβ. In the case of Problem (1.25) it is possible to make this update O(n) per iteration
(Algorithm 1.4). This cheap update trick of coordinate descent generalizes to other
sparse linear models, see Friedman et al. 2010 for details.

Whereas coordinate descent iterates on the columns X:j of X, stochastic gradient des-
cent (or Kaczmarz) iterates over lines Xi: of the design matrix X (Figure 1.7). From an
implementation point of view, accessing efficiently the columns X:j of X requires the
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Figure 1.7 – Matrix storage. For coordinate descent (right), one needs to access
efficiently successively each column X:j of X ∈ Rn×p. On the opposite, when applying
Kaczmarz or SGD (middle), one needs to access efficient each line Xi: of X.

design matrixX to be stored in Fortran order3. On the opposite accessing efficiently the
lines Xi: of X requires the design matrix X to be stored in C order. When dealing with
sparse matrices, this means that the design matrix X should be stored is compressed
sparse column (CSC)4 format for coordinate descent, and compressed sparse row (CSR)
for Kaczmarz.

Algorithm 1.1 Gradient descent
init : β ∈ Rp
for k = 0, 1, . . . , do

β ← β− 1

‖X‖22
X>(Xβ− y) // O(np)

return β

Algorithm 1.2 Kaczmarz
init : β ∈ Rp
for k = 0, 1, . . . , do

Select a sample i ∈ [n]

β ← β− 1

‖Xi:‖2
X>i: (Xi:β−yi) // O(p)

return β

Algorithm 1.3 Naive CD
init : β ∈ Rp
for k = 0, 1, . . . , do

Select a coordinate j ∈ [p]
βj ← βj − 1

‖X:j‖2X
>
:j (Xβ − y) // O(np)

return β

Algorithm 1.4 Efficient CD
init : β ∈ Rp, r = y −Xβ
for k = 0, 1, . . . , do

Select a coordinate j ∈ [p]
βold
j ← βj // O(1)
βj ← βj + 1

‖X:j‖2X
>
:j r // O(n)

// update the residuals r

r −= X:j(βj − βold
j ) // O(n)

return β

A quick review of coordinate descent. The index selection (Table 1.3) and the
update rule (Table 1.4) branchings led to a plethora of results for coordinate descent
(Fercoq and Richtárik, 2015, Tab. 1). Some landmark results for cyclic coordinate
descent include Luo and Tseng (1992); Tseng (2001); Tseng and Yun (2009a); Raza-
viyayn et al. (2013) who have shown convergence results for cyclic coordinate descent
for nonsmooth optimization problems. Then, Beck and Tetruashvili (2013) showed 1/k
convergence rates for convex Lipschitz smooth functions and linear convergence rates
in the smooth strongly convex case. Among the results on random coordinate descent

3see https://scipy-lectures.org/advanced/advanced_numpy/ for details.
4see https://scipy-lectures.org/advanced/scipy_sparse/index.html for details.

https://scipy-lectures.org/advanced/advanced_numpy/
https://scipy-lectures.org/advanced/scipy_sparse/index.html
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one can refer to Nesterov (2012) for the minimization of a smooth function f . It proved
global non-asymptotic 1/k in expectation convergence rate in the case of a smooth
and convex f . This work was later extended to composite optimization f +

∑
j gj

for nonsmooth separable functions (Richtárik and Takáč, 2014; Fercoq and Richtárik,
2015). Refined convergence rates were also shown by Shalev-Shwartz and Tewari (2011);
Shalev-Shwartz and Zhang (2013b).

Some branchings simplify for quadratic problems: exact minimization and coordinate
gradient descent actually coincide.

Proposition 1.3. On Problem (1.25) exact coordinate descent and coordinate gradient
descent lead to the same update rule.

Proof

arg min
βj

1

2
‖y −Xβ‖2 = arg min

βj

1

2
‖y −

p∑
j′=1

βj′X:j′‖2

= arg min
βj

1

2
‖y −

∑
j′ 6=j

βj′X:j′ − βjX:j‖2

= arg min
βj

1

2
‖βjX:j‖2 − 〈y −

∑
j′ 6=j

βj′X:j′ , βjX:j〉

= arg min
βj

1

2
β2
j ‖X:j‖2 − 〈X>:j (y −

∑
j′ 6=j

βj′X:j′), βj〉

= arg min
βj

1

2

(
βj −

1

‖X:j‖2
X>:j (y −

∑
j′ 6=j

βj′X:j′)
)2

=
1

‖X:j‖2
X>:j (y −Xβ + βjX:j)

= βj −
1

‖X:j‖2
X>:j (Xβ − y) . (1.30)

As shown in Algorithms 1.1 and 1.4, one update of gradient descent costsO(np), whereas
on update of coordinate descent costs O(n): in order to do fair comparisons, one must
compare one update of gradient descent, and p updates of coordinate descent.

Definition 1.4 (Epoch). An epoch is p updates of coordinate descent. For the cyclic
index selection it corresponds to exactly one update of each coordinate.

Intuition on the efficiency of coordinate descent (Figure 1.8). Since ‖X:j‖ =
‖Xej‖ ≤ supu∈Rp|‖u‖≤1‖Xu‖ = ‖X‖2, the coordinate specific step size γj , j ∈ [p], is
larger than the step size γ of gradient descent: γj = 1/‖X:j‖2 ≥ 1/‖X‖22 = γ. To
confirm the influence of the step size in coordinate descent success let us do a simple
experiment: Figure 1.8 compares the performance of cyclic coordinate descent with
multiple values of step size. Gradient descent is compared against cyclic coordinate
descent with step sizes γj = δ/Lj + (1 − δ)/L, for multiple values of δ. When δ = 1
one recovers the usual coordinate descent with step size γj = 1/Lj , when δ = 0, one
obtains coordinate descent with step size γj = 1/L. One can see that the performance of
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Figure 1.8 – Influence of stepsizes for cyclic coordinate descent, OLS. Subop-
timality f(β(k)) − f(β̂) as a function of the number of epochs to solve a least squares
problem on multiple datasets from libsvm: leukemia, real-sim and rcv1. Gradient des-
cent is compared against coordinate descent with step sizes γj = δ/Lj + (1− δ)/L, for
multiple values of δ.

coordinate descent with step size 1/L is similar to the performance of gradient descent.
The larger the step size, up to 1/Lj , the faster the convergence.

Figure 1.8 suggests that cyclic coordinate descent converges linearly on the least squares
Problem (1.25), and surpasses gradient descent on real-world datasets. Natural ques-
tions are: is it possible to show linear convergence for coordinate descent? If yes, is it
possible to show the convergence rate of coordinate descent is better than the conver-
gence rate of gradient descent?

1.2.2 Theoretical results on least squares

First, we recall cyclic coordinate descent (Algorithm 1.4) converges.

Proposition 1.5 (Convergence, Bertsekas 2015, Prop. 6.5.1). Cyclic coordinate descent
converges to the minimizer of Problem (1.25).

In addition, one can show linear convergence for cyclic coordinate descent.

Proposition 1.6 (Linear convergence of cyclic CD). Cyclic coordinate descent con-
verges linearly on Problem (1.25).

Proof The proof will be in two parts:

• First we will show that one epoch of cyclic coordinate descent leads to a linear
iteration (as for one iteration of gradient descent, Proposition 1.1).

• Then we show that the iteration matrix of cyclic coordinate descent has its spectral
radius strictly smaller than 1, implying that cyclic coordinate descent converges
linearly.

Lemma 1.7 (Linear iteration). On Problem (1.25), one epoch of cyclic coordinate
descent can be seen as a linear iteration:

β ← TCDβ + bCD , (1.31)
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TCD = (Idp−γpepe>p X>X) . . . (Idp−γ1e1e
>
1 X

>X) ∈ Rp×p , (1.32)

with γj = 1/‖X:j‖2, and bCD ∈ Rp.

Proof The update of the coordinate j writes:

βj ← βj − γjX>:j (Xβ − y)

β ← β − γjX>:j (Xβ − y)ej

β ← β − γjejX>:jXβ − γjX>:j yej
β ← β − γjeje>j X>Xβ − γjX>:j yej
β ← (Idp−γjeje>j X>X)β − γjX>:j yej . (1.33)

Updating the coordinate from j = 1 to j = p, this leads to:

β ← (Idp−γpepe>p X>X) . . . (Idp−γ1e1e
>
1 X

>X)︸ ︷︷ ︸
,TCD

β + bCD , (1.34)

for some bCD ∈ Rp.
We have shown that one epoch of cyclic coordinate descent could be seen as a linear
iteration with iteration matrix TCD. In the next lemma we that the modulus of its
larger eigenvalue is strictly smaller than 1.

Lemma 1.8. The spectral radius of the iteration matrix of cyclic coordinate descent
TCD is strictly smaller than 1:

ρ(TCD) < 1 . (1.35)

Proof With H = X>X � 0,

ρ(TCD) = ρ((Idp−γpepe>p H) . . . (Idp−γ1e1e
>
1 H))

= ρ(H−1/2(Idp−γpH1/2epe
>
p H

1/2) . . . (Idp−γ1H
1/2e1e

>
1 H

1/2)H1/2)

= ρ((Idp−γpH1/2epe
>
p H

1/2) . . . (Idp−γ1H
1/2e1e

>
1 H

1/2)) .

For j ∈ [p], let T (j) , (Idp−γjH1/2eje
>
j H

1/2), T (j) is the orthogonal projection onto
Span(H1/2ej)

⊥, we thus have ‖T (j)‖2 ≤ 1, and

ρ(T (p) × · · · × T (1)) = ‖T (p) × · · · × T (1)‖2 ≤ ‖T (p)‖2 × · · · × ‖T (1)‖2 ≤ 1 . (1.36)

Suppose there exists a (potentially complex) eigenvalue δ ∈ C and an eigenvector β ∈
Cp 6= 0 of T (p) × · · · × T (1) such that |δ| = 1, we have ‖T (p) × · · · × T (1)β‖2 = ‖β‖2.
Since ‖T (1)‖ ≤ 1, we have ‖T (1)β‖ = 1, leading to β ∈ Span(H1/2e1)⊥ and T (1)β = β.
Recursively we have that β ∈ Span(H1/2e1, . . . ,H

1/2ep)
⊥ = {0}, which is a contradic-

tion.

To conclude we have ρ(T (p) × · · · × T (1)) ≤ 1 and T (p) × · · · × T (1) has no eigenvalue of
modulus 1, thus,

ρ(TCD) = ρ(T (p) × · · · × T (1)) < 1 . (1.37)
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Figure 1.9 – Cyclic against random coordinate descent. Suboptimality as a func-
tion of the number of epochs to solve a least squares problems. Gradient descent is
compared against random and cyclic coordinate descent.

Using Polyak (1987, Theorem 1, Section 2.1.2), cyclic coordinate descent converges lin-
early.

We just showed the linear convergence of cyclic coordinate descent on the simple Prob-
lem (1.25). The reasoning above is extended in Chapter 2 to show the local linear
convergence of cyclic coordinate descent on Problem (1.24).

Does coordinate descent outperforms gradient descent? In other words, for the same
cost per update, how do the worst-case convergence rates of gradient and coordinate
descent compare? Unfortunately, the answer will depend on the index selection proced-
ure. While being used as a default mode for nonsmooth optimization problems in all
preeminent machine learning packages, cyclic coordinate has a poor worst-case conver-
gence rate (Beck and Tetruashvili, 2013). Indeed, it is possible to construct adversarial
examples to deteriorate the performance of coordinate descent.

Example 1.9 (Sun and Ye 2019). For c ∈
]
0, 1
[
, we define the quadratic problem:

min
β∈Rp

1

2
β>


1 c . . . c

c
. . . . . .

...
...

. . . . . . c
c . . . c 1

β . (1.38)

On this objective, as c approaches 1, cyclic coordinate descent isO(p2) times slower than
randomized coordinate descent. Figure 1.9, left, shows the suboptimality as a function of
the number of epochs on Example 1.9, with c = 0.8 and p = 100. Regression coefficients
β are initialized with random Gaussian i.i.d. entries β ∼ N (0, 1). On this specific
example, coordinate descent with cyclic index selection performs worse than gradient
descent. However, coordinate descent with random index selection performs much better
than gradient descent. Theoretically, it is possible to show that coordinate descent with
random index selection perfoms better than gradient descent in expectation.
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Proposition 1.10 (Convergence rates on quadratics, Sun and Ye 2019). For L-smooth
µ-strongly convex quadratic functions f , gradient descent (GD), random (RCD) and
cyclic (CCD) coordinate descent converge with the following per epochs complexity rates:

f
(
β

(k+1)
GD

)
− f

(
β̂
)
≤ exp

(
−µ
L

)(
f
(
β

(k)
GD

)
− f

(
β̂
))

, (1.39)

Ef
(
β

(k+1)
RCD

)
− f

(
β̂
)
≤ exp

− pµ∑p
j=1 Lj

(Ef(β(k)
RCD

)
− f

(
β̂
))

, (1.40)

f(β
(k+1)
CCD )− f(β̂) ≤ exp

− µ

p
∑p

j=1 Lj

(f(β
(k)
CCD)− f(β̂)

)
, (1.41)

and these rates are tight.

Remark 1.11 (Proposition 1.10). Since
∑p

j=1 Lj/p ≤ L ≤
∑p

j=1 Lj, we have:

exp

− pµ∑p
j=1 Lj


︸ ︷︷ ︸

RCD

≤ exp

(
−µ
L

)
︸ ︷︷ ︸

GD

≤ exp

− µ

p
∑p

j=1 Lj


︸ ︷︷ ︸

CCD

. (1.42)

The worst-case convergence rate of random coordinate descent is better than the one of
gradient descent, which is itself better than the one of cyclic coordinate descent. Note
that scikit-learn and glmnet implement the cyclic index selection procedure: on real-
life datasets cyclic coordinate descent seems to perform better (Figure 1.9, middle and
right). This phenomenon is understood in some very specific cases, when the Hessian is
very structured (Gurbuzbalaban et al., 2017), but remains largely unexplained in general.

1.2.3 Beyond quadratics

Coordinate descent for ordinary least squares (Algorithm 1.4) can be generalized for
nonquadratic smooth optimization problems (Nesterov, 2012; Beck and Tetruashvili,
2013) and for composite Problem (1.24) using its proximal variation (PCD, Richtárik
and Takáč 2014, Algorithm 1.5). Note that for sparse generalized linear models (GLMs),
cheap coordinate descent updates are possible. If for all β ∈ Rp, f(β) = F (Xβ), for
some convex smooth function F , then an update of coordinate descent can be made
O(n) (Algorithm 1.6).

Algorithm 1.5 Naive PCD
init : β ∈ Rp, Lj > 0
for k = 0, 1, . . . , do

Select a coordinate j ∈ [p]
βj←prox gj

Lj

(βj − 1
Lj
∇jf(β)) // O(np)

return β

Algorithm 1.6 Efficient PCD for GLMs
init : β ∈ Rp, r = Xβ, Lj > 0
for k = 0, 1, . . . , do

Select a coordinate j ∈ [p]
βold
j ← βj // O(1)
βj←prox gj

Lj

(βj− 1
Lj
X>:j∇F (Xβ))// O(n)

// update efficiently r = Xβ

r += X:j(βj − βold
j ) // O(n)

return β
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1.3 Contributions

This thesis is organized as follows: in Part I we investigate some theoretical and em-
pirical properties of coordinate descent to solve “smooth + nonsmooth separable” op-
timization problems. In Part II we explore the hyperparameter selection from a stat-
istical point of view: we show that for some estimators, the regularization parameter
is independent from the noise level. We also provide applications to the brain source
localization problem on real M/EEG data. In Part III we present multiple ways of ap-
plying first-order methods to tackle bilevel optimization problems with nonsmooth inner
optimization problems: these methods are applied to hyperparameter optimization.

Note that each chapter is self-sufficient and can be read independently. In this thesis
we strongly emphasize on numerical contributions as well as reproducibility: each part
comes with extensively documented and tested open source code.

More precisely in Part I:

• Chapter 2 introduces two properties of coordinate descent: under some mild as-
sumptions on the composite nonsmooth optimization Problem (1.24), it is shown
finite time support identification and local linear convergence. For example, zeros
coefficients of Lasso solutions β̂ are exactly attained after some iteration K: with
S = {j ∈ [p] : β̂j 6= 0}, β(k) the iterates of coordinate descent, there exists K ∈ N,
such that for all k ≥ K, for all j ∈ Sc, β(k)

j = β̂j = 0. After support identifica-
tion, there exists a regime where the iterates β(k) converge linearly toward β̂. This
properties are extensively used for the rest of the thesis, in particular in Chapter 3
for acceleration, and in Chapter 6 for hyperparameter optimization.

• In Chapter 3, we investigate Anderson acceleration for coordinate descent. First
we illustrate that à la Nesterov acceleration for coordinate descent can lead to
poor convergence in practice: this contrasts with its optimal theoretically accel-
erated convergence rate. Then we show numerically that usual proofs of Ander-
son accelerated rates cannot be applied for coordinate descent, and we provide
a way to theoretically accelerate coordinate descent on quadratic optimization
problems. Finally, we illustrate extensively the performance of Anderson accel-
erated coordinate descent on a large number of optimization problems, datasets,
and experimental settings. The approach proposed in this chapter can be com-
bined with working sets techniques, and generalized to numerous data fitting
terms and penalties implemented in a modular open source package andersoncd:
https://github.com/mathurinm/andersoncd. The proposed algorithm is also
now implemented5 as the default solver in the preeminent brain signal processing
package MNE.

In Part II:

• Chapter 4: in this work we study estimators for which the regularization parameter
is independent of the noise level. These estimators rely on challenging "nonsmooth
+ nonsmooth" optimization problems. One practical way of computing such es-
timators is to smooth the data fitting term: the larger the smoothing term, the
easier the optimization, but the more modified the initial estimator. Provided

5https://github.com/mne-tools/mne-python/commit/080e7a879d325ad8f0c11fe28a8ff9f5983dfd2f

https://github.com/mathurinm/andersoncd
https://github.com/mne-tools/mne-python/commit/080e7a879d325ad8f0c11fe28a8ff9f5983dfd2f
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that the smoothing parameter is not too large, we show that partial smoothing
preserves the support recovery and pivotal properties. In addition we precisely
quantify how large the smoothing parameter can be, leading to practical guidelines
to calibrate this hyperparameter.

• In Chapter 5 we propose an application of pivotal estimators to the M/EEG source
localization problem. We introduce an estimator based on an optimization prob-
lem with a smoothed trace norm as a data fitting term and an `2,1 norm as a reg-
ularizer. In addition to be independent to the noise level, the proposed estimator
can take advantage of the M/EEG data multiple repetitions, and is designed to
take into account Gaussian correlated noise. Last but not least, thanks to partial
smoothing, one can efficiently apply block coordinate descent algorithms to solve
the underlying optimization problem. Extensive experiments on real M/EEG data
show the interest of the this estimator on visual and auditory tasks. Code and
documentation can be found online: https://github.com/QB3/CLaR. The pro-
posed algorithm should soon be implemented in the jaxopt library (Blondel et al.,
2021), which extends the automatic differentiation library jax (Bradbury et al.,
2018), and allows to differentiate through solutions of optimization problems.

In Part III:

• In Chapter 6 we study the most popular hyperparameter selection approach in
machine learning, encompassing hold-out and cross-validation: hyperparameter
optimization. Our approach models this step as a challenging bilevel optimiza-
tion with nonsmooth inner problems. Usual solvers usually rely on zeros order
algorithms, whose complexity scales exponentially with the number of hyperpara-
meters. To circumvent this problem, we propose an efficient implicit differenti-
ation algorithm to compute the hypergradient. The bilevel optimization problem
can then be solved using first-order methods. The proposed approach can be
applied to set the regularization parameter for a wide range of estimators such
as the Lasso, the elastic net, or the SVM: efficient implementation and extensive
documentation can be found here: https://github.com/QB3/sparse-ho.

1.4 Publications

The work presented in this thesis led to the following publications:

• Q. Bertrand, M. Massias, A. Gramfort, and J. Salmon. Handling correlated
and repeated measurements with the smoothed multivariate square-root Lasso.
In NeurIPS, 2019

• M. Massias, Q. Bertrand, A. Gramfort, and J. Salmon. Support recovery and
sup-norm convergence rates for sparse pivotal estimation. In AISTATS, 2020a

• Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon.
Implicit differentiation of Lasso-type models for hyperparameter optimization.
ICML, 2020

• Q. Bertrand and M. Massias. Anderson acceleration of coordinate descent. In
AISTATS, 2021

https://github.com/QB3/CLaR
https://github.com/QB3/sparse-ho
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• Q. Klopfenstein, Q. Bertrand, A. Gramfort, J. Salmon, and S. Vaiter. Model
identification and local linear convergence of coordinate descent. arXiv preprint
arXiv:2010.11825, 2020

• Q. Bertrand, Q. Klopfenstein, M. Massias, M. Blondel, S. Vaiter, A. Gramfort,
and J. Salmon. Implicit differentiation for fast hyperparameter selection in non-
smooth convex learning. arXiv preprint arXiv:2105.01637, 2021
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For composite nonsmooth optimization problems, which are regular enough, proximal
gradient descent achieves model identification after a finite number of iterations. For in-
stance, for the Lasso, this implies that the iterates of proximal gradient descent identify
the non-zeros coefficients after a finite number of steps. Identification properties often
rely on the framework of partial smoothness. In this work we show simple sufficient
conditions to be a partial smooth function when the nonsmooth penalty is separable.
In this simplified framework, we show cyclic coordinate descent achieves model identi-
fication in finite time, which yields explicit local linear convergence rates. Theses two
properties are paramount for other works in this thesis, in particular to design accel-
erated algorithms for coordinate descent (Chapter 3) and to perform gradient-based
hyperparameter optimization with nonsmooth inner problems (Chapter 6).
This chapter is based on the following work

• Q. Klopfenstein, Q. Bertrand, A. Gramfort, J. Salmon, and S. Vaiter. Model
identification and local linear convergence of coordinate descent. arXiv preprint
arXiv:2010.11825, 2020

2.1 Introduction

Over the last two decades, coordinate descent (CD) algorithms have become a powerful
tool to solve large scale optimization problems (Friedman et al., 2007, 2010). Many
applications coming from machine learning or compressed sensing have lead to optim-
ization problems that can be solved efficiently via CD algorithms: the Lasso (Tibshir-
ani, 1996; Chen et al., 1998), the elastic net (Zou and Hastie, 2005) or support-vector
machine (Boser et al., 1992). All the previously cited estimators are based on an op-
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timization problem which can be written:

β̂ ∈ arg min
β∈Rp

{Φ(β) , f(β) +

p∑
j=1

gj(βj)︸ ︷︷ ︸
,g(β)

} , (2.1)

with f a convex smooth (i.e., with a Lipschitz gradient) function and gj proper closed
and convex functions. In the past twenty years, the popularity of CD algorithms has
greatly increased due to the well suited structure of the new optimization problems
mentioned above (i.e., separability of the nonsmooth term), as well as the possible
parallelization of the algorithms (Fercoq and Richtárik, 2015; Richtárik and Takáč,
2016; Salzo and Villa, 2021).

The key idea behind CD (Algorithm 2.1) is to solve small and simple subproblems
iteratively until convergence. More formally, for a function Φ : Rp 7→ R, the idea is
to minimize successively one dimensional functions Φ|βj : R 7→ R, updating only one
coordinate at a time, while the others remain unchanged. There exists many variants
of CD algorithms, the main branching being:

• The index selection. There are different ways to choose the index of the updated
coordinate at each iteration. The main variants can be divided in three categories,
cyclic CD (Tseng and Yun, 2009a) when the indices are chosen in the set [p] ,
{1, . . . , p} cyclically. Random CD (Nesterov, 2012), where the indices are chosen
following a given random distribution. Finally, greedy CD (Nutini et al., 2015)
picks an index, optimizing a given criterion: largest decrease of the objective
function, or largest gradient norm (Gauss-Southwell rule), for instance.

• The update rule. There also exists several possible schemes for the coordinate
update: exact minimization, coordinate gradient descent or prox-linear update
(see Shi et al. 2016, Sec. 2.2 for details).

In this work, we will focus on the most popular combination: cyclic CD with prox-
linear update rule (Algorithm 2.1), implemented in popular packages such as glmnet
(Friedman et al., 2007) or sklearn (Pedregosa et al., 2011).

Among the methods of coordinate selection, random CD has been extensively stud-
ied, especially by Nesterov (2012) for the minimization of a smooth function f . It
was the first paper proving global non-asymptotic 1/k convergence rate in the case
of a smooth and convex f . This work was later extended to composite optimization
f +

∑
j gj for nonsmooth separable functions (Richtárik and Takáč, 2014; Fercoq and

Richtárik, 2015). Refined convergence rates were also shown by Shalev-Shwartz and Te-
wari (2011); Shalev-Shwartz and Zhang (2013b). These convergence results have then
been extended to coordinate descent with equality constraints (Necoara and Patrascu,
2014) that induce non-separability as found in the SVM dual problem in the presence of
the bias term. Different distributions have been considered for the index selection such
as uniform distribution (Fercoq and Richtárik, 2015; Nesterov, 2012; Shalev-Shwartz
and Tewari, 2011; Shalev-Shwartz and Zhang, 2013b), importance sampling (Leventhal
and Lewis, 2010; Zhang, 2004) and arbitrary sampling (Necoara and Patrascu, 2014;
Qu and Richtárik, 2016a,b).
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On the opposite, theory on cyclic coordinate descent is more fuzzy, the analysis in
the cyclic case being more difficult. First, Luo and Tseng (1992); Tseng (2001); Tseng
and Yun (2009a); Razaviyayn et al. (2013) have shown convergence results for (block)
CD algorithms for nonsmooth optimization problems (without rates1). Then, Beck and
Tetruashvili (2013) showed 1/k convergence rates for Lipschitz convex functions and
linear convergence rates in the strongly convex case. Saha and Tewari (2013) proved
1/k convergence rates for composite optimization f+‖.‖1 under "isotonicity" condition.
Sun and Hong (2015); Hong et al. (2017) have extended the latter results and showed
1/k convergence rates with improved constants for composite optimization f+

∑
j gj . Li

et al. (2017) have extended the work of Beck and Tetruashvili (2013) to the nonsmooth
case and refined their convergence rates in the smooth case. Finally, as far as we
know, the work by Xu and Yin (2017) is the first one tackling the problem of local
linear convergence. They have proved local linear convergence under the very general
Kurdyka-Lojasiewicz hypothesis, relaxing convexity assumptions. Following the line of
work by Liang et al. (2014), we use a more restrictive framework, that allows to achieve
finer results: model identification as well as improved local convergence results.

2.2 Model identification

Nonsmooth optimization problems coming from machine learning such as the Lasso
or the support-vector machine (SVM) generally generate solutions lying onto a low-
complexity model (see Definition 2.7 for details). For the Lasso, for example, a solution
β̂ has typically only a few non-zeros coefficients: it lies on the model set Tβ̂ = {u ∈
Rp : supp(u) ⊆ supp(β̂)}, where supp(β) is the support of β, i.e., the set of indices
corresponding to the non-zero coefficients. A question of interest in the literature is:
does the algorithm achieve model identification after a finite number of iterations?
Formally, does it exist K > 0 such that for all k > K, β(k) ∈ Tβ̂? For the Lasso the
question boils down to “does it exist K > 0 such that for all k > K, supp(β(k)) ⊆
supp(β̂)”? This finite time identification property is paramount for features selection
(Tibshirani, 1996), but also for potential acceleration methods (Massias et al., 2018b)
of the CD algorithm, as well as model calibration (see Chapter 6).

Finite model identification was first proved in Bertsekas (1976) for the projected gradi-
ent method with non-negative constraints. In this case, after a finite number of steps
the sparsity pattern of the iterates is the same as the sparsity pattern of the solu-
tion. It means that for k large enough, β(k)

j = 0 for all j such that β̂j = 0. Then,
many other results of finite model identification have been shown in different settings
and for various algorithms. For the projected gradient descent algorithm, identification
was proved for polyhedral constraints (Burke and Moré, 1988), for general convex con-
straints (Wright, 1993), and even non-convex constraints (Hare and Lewis, 2004). More
recently, identification was proved for proximal gradient algorithm (Lions and Mercier,
1979; Combettes and Wajs, 2005), for the `1 regularized problem (Hare, 2011). Liang
et al. (2014, 2017); Vaiter et al. (2018) have shown model identification and local linear
convergence for proximal gradient descent. These results have then been extended to
other popular machine learning algorithms such as SAGA, SVRG (Poon et al., 2018)
and ADMM (Poon and Liang, 2019), see Iutzeler and Malick (2020) for a review. To
our knowledge, apart from the line of work of Nutini et al. (2017); Nutini (2018); Nutini
et al. (2019), which we discuss thoroughly in Remark 2.14, CD has not been extensively

1Note that some local rates are shown in Tseng and Yun (2009a) but under some strong hypothesis.
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studied with a similar generality. Some identification results have been shown for CD,
but only on specific models (She and Schmidt, 2017; Massias et al., 2020b) or variants
of CD (Wright, 2012), in general, under restrictive hypothesis.

Coordinate descent. We denote 0 < γj ≤ 1/Lj the local step size and γ = (γ1, . . . , γp)
>.

To prove model identification we need to “keep track” of the iterates: following the nota-
tion from Beck and Tetruashvili (2013) coordinate descent can be written:

Algorithm 2.1 Proximal coordinate descent

input : γ1, . . . , γp ∈ R+, niter ∈ N, β(0) ∈ Rp
for k = 0, . . . , niter do

β(0,k)←β(k)

for j = 1, . . . , p do // index selection

β(j,k)←β(j−1,k)

β
(j,k)
j ←proxγjgj

(
β

(j−1,k)
j − γj∇jf(β(j−1,k))

)
// update rule

β(k+1)←β(p,k)

return βniter+1

We consider the optimization problem defined in Equation (2.1) with the following
assumptions:

Assumption 2.1 (Smoothness). f is a convex and differentiable function, with a
Lipschitz gradient.

Assumption 2.2 (Proper, closed, convex). For any j ∈ [p], gj is proper, closed and
convex.

Assumption 2.3 (Existence). The problem admits at least one solution:

arg min
β∈Rp

Φ(β) 6= ∅ . (2.2)

Assumption 2.4 (Non degeneracy). The problem is non-degenerate: for any β̂ ∈
arg minx∈Rp Φ(x)

−∇f(β̂) ∈ ri
(
∂g(β̂)

)
. (2.3)

Remark 2.5. Assumption 2.4 can be seen as a generalization of qualification constraints
(Hare and Lewis, 2007, Sec. 1), and is usual in the machine learning literature (Zhao
and Yu, 2006; Bach, 2008). Note that this assumption can be considered too conser-
vative, and one can try to relax it using the mirror-stratifiable framework (Fadili et al.,
2018, 2019).

The contributions of this chapter are the following, first,

• When the nonsmooth penalty g is separable, we provide simple sufficient condi-
tions for the optimized function to be partly smooth.

Then, under mild assumptions on the gj functions, for the cyclic proximal coordinate
descent algorithm:



2.2. MODEL IDENTIFICATION 51

• We prove finite time model identification (Theorem 2.13).

• We provide local linear convergence rates (Theorem 2.16).

• We illustrate our results on multiple real datasets and estimators (Section 2.4)
showing that our theoretical rates match the empirical ones.

2.2.1 Partial smoothness for separable functions

The class of partly smooth functions was first defined in Lewis (2002). It encompasses
a large number of known nonsmooth machine learning optimization penalties, such as
the `1-norm or box constraints to only name a few, see Vaiter et al. (2018, Section
2.1) for details. Interestingly, this framework enables powerful theoretical tools on
model identification such as Hare and Lewis (2004, Thm. 5.3). Loosely speaking, a
partly smooth function behaves smoothly as it lies on the related model and sharply
if we move normal to that model. Formally, we recall the definition of partly smooth
functions restricted to the case of proper, lower semicontinuous and convex functions.

Definition 2.6 (Partial smoothness). Let g : Rp → R be a proper closed convex func-
tion. g is said to be partly smooth at β relative to a set M ⊆ Rn if there exists a
neighborhood U of β such that

• (Smoothness)M∩U is a C2-manifold and g restricted toM∩U is C2,

• (Sharpness) The tangent space of M at β is the model tangent space Tβ where
Tβ = Lin(∂g(β))⊥,

• (Continuity) The set valued mapping ∂g is continuous at β relative toM.

One of the key assumptions to solve Equation (2.1) using CD is that the nonsmooth
function g is separable. In this setting, the setM appearing in Definition 2.6 is related
to the notion of support that we now define.

Definition 2.7 (Generalized support, Nutini et al. 2019, Def. 1). For a vector x ∈ Rp,
its generalized support Sβ ⊆ [p] is the set of indices j ∈ [p] such that gj is differentiable
at βj:

Sβ , {j ∈ [p] : ∂gj(βj) is a singleton} .

An iterative algorithm is said to achieve finite support identification if its iterates
β(k) converge to β̂ ∈ arg minx∈Rp Φ(x), and there exists K ≥ 0 such that for all j /∈ Sβ̂,
for all k ≥ K,β(k)

j = β̂j.

This notion can be unified with the definition of model subspace from Vaiter et al.
(2015, Sec. 3.1):

Definition 2.8 (Model subspace, Vaiter et al. 2015). We denote the model subspace at
x:

Tβ = {u ∈ Rp : ∀j ∈ Scβ, uj = 0} , (2.4)

where Sβ is the generalized support of β (see Definition 2.7).
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Example 2.9 (The `1 norm). The function g(β) =
∑p

j=1 |βj | is certainly the most
popular nonsmooth convex regularizer promoting sparsity. Indeed, the `1 norm generates
structured solution with model subspace (Vaiter et al., 2018). We have that Sβ = {j ∈
[p] : βj 6= 0} since | · | is differentiable everywhere but not at 0, and the model subspace
reads:

Tβ = {u ∈ Rp : supp(u) ⊆ supp(β)} . (2.5)

The `1-norm is partly smooth at β relative to the setMβ = Tβ.

Example 2.10 (The box constraints indicator function ι[0,C]). This indicator function
appears for instance in box constrained optimization problems such as the dual problem
of the SVM. Let I0

β =
{
j ∈ [p] : βj = 0

}
and ICβ =

{
j ∈ [p] : βj = C

}
, then

Tβ = {u ∈ Rp : I0
β ⊆ I0

u and ICβ ⊆ I0
u}.

For the SVM, model identification boils down to finding the active set of the box con-
strained quadratic optimization problem after a finite number of iterations. The box
indicator function of the interval [0, C] is partly smooth at β relative to the set Mβ =
β + Tβ.

For separable functions, the next lemma gives an explicit link between the generalized
support (Definition 2.7) and the framework of partly smooth functions (Hare and Lewis,
2004).

Lemma 2.11. Let β̂ ∈ dom(g). If for every j ∈ Sβ̂, gj is locally C2 around β̂j, then g
is partly smooth at β̂ relative to β̂ + Tβ̂.

Proof We need to prove the three properties of the partial smoothness (Definition 2.6):

• Smoothness. Let us write Mβ̂ = β̂ + Tβ̂ the affine space directed by the model
subspace and pointed by β̂. In particular, it is a C2-manifold.

For every j ∈ Sβ̂ , gj is locally C2 around β̂j , hence there exists a neighborhood
Uj of β̂j such that the restriction of gj to U is twice continuously differentiable.
For j ∈ Sc

β̂
, let’s write Uj = R. Take U =

⊗
j∈[p] Uj . This a neighborhood of β̂

(it is open, and contains β̂). Consider the restriction g|Mβ̂
of g toMβ̂ . It is C2

at each point of U since each coordinates (for j ∈ Sβ̂) are C2 around Uj .

• Sharpness. Since g is completely separable, we have that

∂g(β̂) = ∂g1(β̂1)× . . .× ∂gp(β̂p) . (2.6)

Note that ∂gj(β̂j) is a set valued mapping which is equal to the singleton {∇jg(β̂j)}
if gj is differentiable at β̂j or it is equal to an interval. The model tangent space
Tβ̂ of g at β̂ is given by

Tβ̂ = span(∂g(β̂))⊥ where span(∂g(β̂)) = aff(∂g(β̂))− eβ̂ , (2.7)
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with

eβ̂ = arg min
e∈aff(∂g(β̂))

‖e‖ , (2.8)

called the model vector.

In the particular case of separable functions, we have that

aff
(
∂g(β̂)

)
= aff

(
∂g1(β̂1)× . . .× ∂gp(β̂p)

)
= aff

(
∂g1(β̂1)

)
× . . .× aff

(
∂gp(β̂p)

)
.

In this case,

aff
(
∂gj(β̂j)

)
=

{∇jg(β̂j)} if j ∈ Sβ̂
R otherwise

(2.9)

and

eβ̂j =

∇jg(β̂j) if j ∈ Sβ̂
0 otherwise .

(2.10)

Thus we have that

span
(
∂g(β̂)

)
= aff

(
∂g(β̂)

)
− eβ̂ = {x ∈ Rp : ∀j′ ∈ Sβ̂, βj′ = 0} .

Then

Tβ̂ = span
(
∂g(β̂)

)⊥
= {x ∈ Rp : ∀j′ ∈ Sc

β̂
, βj′ = 0} . (2.11)

• Continuity. We are going to prove that ∂g is inner semicontinuous at β̂ relative
toMβ̂ , i.e., that for any sequence (β(k)) of elements ofMβ̂ converging to β̂ and
any η̄ ∈ ∂g(β̂), there exists a sequence of subgradients η(k) ∈ ∂g(β(k)) converging
to η̄.

Let β(k) be a sequence of elements ofMβ̂ converging to β̂, or equivalently, let t(k)

be a sequence of elements of Tβ̂ converging to 0, and let η̄ ∈ ∂g(β̂).

For j ∈ Sβ̂ , we choose η
(k)
j , g′j(β̂j + t

(k)
j ), using the smoothness property we have

η
(k)
j , η̄j . For all j ∈ Scβ̂ β

(k)
j = β̂j we choose η(k)

j , η̄j , since β(k) ∈Mβ̂ , we have

η
(k)
j ∈ ∂g(β(k)).

We have that η(k) ∈ ∂g(βk) and η(k) converges towards η̄ since g′j is C1 around

β̂j for j ∈ Sβ̂ , hence, g′j(β̂j + t
(k)
j ) converges to g′j(β̂j) = η̄j . Thus, it proves that

g is partly smooth at β̂ relative to β̂ + Tβ̂ .
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2.2.2 Identification

In this section we show the generalized support identification result of cyclic coordinate
descent. To ensure model identification, we need the following (mild) assumption:

Assumption 2.12 (Locally C2). For all j ∈ Sβ̂, gj is locally C2 around β̂j, and f is
locally C2 around β̂.

It is satisfied for the Lasso and the dual SVM problem mentioned above, but also
for sparse logistic regression and elastic net. The following theorem shows that the
CD (Algorithm 2.1) has the model identification property with local constant step size
0 < γj ≤ 1/Lj :

Theorem 2.13 (Model identification of CD). Consider a solution β̂ ∈ arg minβ∈Rp Φ(β)
and S = Sβ̂. Suppose

1. Assumptions 2.1 to 2.4 and 2.12 hold,

2. The sequence (β(k))k≥0 generated by Algorithm 2.1 converges to β̂.

Then, Algorithm 2.1 identifies the model after a finite number of iterations, which means
that there exists K > 0 such that for all k ≥ K, β(k)

Sc = β̂Sc.

This result implies that for k large enough, β(k) shares the support of β̂ (potentially
smaller).

Proof Thanks to Lemma 2.11, we have that g is partly smooth (Lewis, 2002) at β̂
relative to the affine space β̂ + Tβ̂ .

We now prove that for the CD Algorithm 2.1: dist
(
∂Φ(β(k)), 0

)
→ 0, when k →∞.

As written in Algorithm 2.1, one update of coordinate descent reads:

1

γj
β

(j−1,k)
j −∇jf

(
β(j−1,k)

)
− 1

γj
β

(j,k)
j ∈ ∂gj

(
β

(j,k)
j

)
1

γj
β

(k)
j −∇jf

(
β(j−1,k)

)
− 1

γj
β

(k+1)
j ∈ ∂gj

(
β

(k+1)
j

)
.

Since g is separable with non-empty subdifferential, the coordinatewise subdifferential
of g is equal to the subdifferential of g, we then have

1

γ
� β(k)−

(
∇jf

(
β(j−1,k)

))
j∈[p]

− 1

γ
� β(k+1) ∈ ∂g(β(k+1)) , (2.12)

which leads to

1

γ
� β(k) −

(
∇jf

(
β(j−1,k)

))
j∈[p]

− 1

γ
� β(k+1) +∇f(β(k+1)) ∈ ∂Φ(β(k+1)) . (2.13)
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To prove support identification using Hare and Lewis (2004, Thm. 5.3), we need to
bound the distance between ∂Φ(β(k+1)) and 0, using Equation (2.13):

dist
(
∂Φ(β(k+1)), 0

)2
≤

p∑
j=1

∣∣∣∣∣∣β
(k)
j

γj
−∇jf(β(j−1,k))−

β
(k+1)
j

γj
+∇jf(β(k+1))

∣∣∣∣∣∣
2

≤ ‖β(k) − β(k+1)‖2γ−1 +

p∑
j=1

∣∣∣∣∇jf (β(j−1,k)
)
−∇jf

(
β(k+1)

)∣∣∣∣2

≤ ‖β(k) − β(k+1)‖2γ−1 + L2
p∑
j=1

‖β(j−1,k) − β(k+1)‖2

≤ ‖β(k) − β(k+1)‖2γ−1 + L2
p∑
j=1

p∑
j′≥j

∣∣∣∣β(k)
j′ − β

(k+1)
j′

∣∣∣∣2︸ ︷︷ ︸
→0 when k→∞

.

We thus have:

• dist
(
∂Φ(β(k+1)), 0

)
→ 0

• Φ(β(k)) → Φ(β̂) because Φ is prox-regular (since it is convex, see Poliquin and
Rockafellar 1996a) and subdifferentially continuous.

Then the conditions to apply Hare and Lewis (2004, Th. 5.3) are met and hence we
have model identification after a finite number of iterations.

Remark 2.14 (Link with existing literature). Regarding generic model identification
results for CD Algorithm 2.1, Nutini et al. (2017, Lemma 3) shows model identification
of coordinate descent, but relies on (Nutini et al., 2019, Lemma 1), assuming the strong
convexity of the smooth function f . This is a strong hypothesis in the sparse setting,
usually not realistic. Nutini (2018, Sec. 6.2.2, Thm. 9) shows model identification of
coordinate descent with step size 1/L, without the strong convexity of f . We proposed
a similar results for CD with step size 1/Lj, relying a different proof technique: the
proof of Nutini (2018, Sec. 6.2.2, Thm. 9) is based on an explicit manipulation of the
expression of the minimum distance to the boundary of the subdifferential, whereas our
proof is based on a geometrical statement showing that any separable function regular
enough enjoys a natural control on this distance, thanks to partial smoothness theory.

2.3 Local linear convergence

In this section, we prove the local linear convergence of the CD Algorithm 2.1. After
model identification, there exists a regime where the convergence towards a solution of
Equation (2.1) is linear. Local linear convergence was already proved in various settings
such as for ISTA and FISTA algorithms (i.e., with an `1 penalty, Tao et al. 2016) and
then for the general Forward-Backward algorithm (Liang et al., 2014).

Local linear convergence requires an additional assumption: restricted injectivity. It is
classical for this type of analysis as it can be found in Liang et al. (2017) and Poon and
Liang (2019).



56
CHAPTER 2. MODEL IDENTIFICATION AND LOCAL LINEAR

CONVERGENCE

Assumption 2.15. (Restricted injectivity) For a solution β̂ ∈ arg minβ∈Rp Φ(β), the
restricted Hessian to its generalized support S = Sβ̂ is definite positive, i.e.,

∇2
S,Sf(β̂) � 0 . (2.14)

In order to study local linear convergence, we consider the fixed-point iteration of a
complete epoch (an epoch is a complete pass over all the coordinates). Thanks to
model identification (Theorem 2.13), we are able to prove that once the generalized
support is correctly identified, there exists a regime where CD algorithm converges
linearly towards the solution.

Theorem 2.16 (Local linear convergence). Consider a solution β̂ ∈ arg minβ∈Rp Φ(β)
and S = Sβ̂. Suppose

1. Assumptions 2.1 to 2.4, 2.12 and 2.15 hold.

2. The sequence (β(k))k≥0 generated by Algorithm 2.1 converges to β̂.

3. The model has been identified i.e., there exists K ≥ 0 such as for all k ≥ K

β
(k)
Sc = β̂Sc .

Then (β(k))k≥K converges locally linearly towards β̂. More precisely, once the model has
been identified, there exists ψ : R|S| → R|S| (defined in Equation (2.18)) such that:

β
(k+1)
S = ψ(β

(k)
S ) ,

and for any ν ∈ [ρ(Jψ(β̂S)), 1[, there exists K > 0 and C > 0 such that for all k ≥ K,

‖β(k)
S − β̂S‖ ≤ Cν(k−K)‖β(K)

S − β̂S‖ .

Proof To simplify the notations we write S , Sβ̂ , and its elements as follows: S =

{j1, . . . , j|S|}. We also define π : R|S| → Rp for all βS ∈ R|S| and all j ∈ S by

π(βS)j =

βj if j ∈ S
β̂j if j ∈ Sc ,

(2.15)

and for all s ∈ [|S|], P(s) : R|S| → R|S| is defined for all u ∈ R|S| and all s′ ∈ [|S|] by

(
P(s)(u)

)
s′

=

us′ if s 6= s′

proxγjsgjs

(
us − γjs∇jsf(π(u))

)
if s = s′ .

(2.16)

Once the model is identified (Theorem 2.13), we have that there exists K ≥ 0 such that
for all k ≥ K

β
(k)
Sc = β̂Sc and (2.17)

β
(k+1)
S = ψ(β

(k)
S ) , P(|S|) ◦ . . . ◦ P(1)(β

(k)
S ) . (2.18)

The proof of Theorem 2.16 follows the same steps as the ones of Proposition 1.6 on
least squares in Chapter 1:
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• First we show that the fixed-point operator ψ is differentiable at β̂S (Lemma 2.17).

• Then we show that the Jacobian spectral radius of ψ is strictly bounded by one
(Lemma 2.18 (e)). Proof of Lemma 2.18 (e) relies on Lemmas 2.18 (a) to 2.18 (d).

• Finally we conclude to local linear convergence by applying Polyak (1987, Theorem
1, Section 2.1.2).

The following lemma shows that ψ is differentiable at the optimum.

Lemma 2.17 (Differentiability fixed-point operator). ψ is differentiable at β̂S with
Jacobian:

Jψ(β̂S) = M−1/2 (Id−B(|S|)) . . . (Id−B(1))︸ ︷︷ ︸
,A

M1/2 , (2.19)

M , ∇2
S,Sf(β̂) + diag (u) ∈ R|S|×|S| , (2.20)

u ∈ R|S| is defined for all s ∈ [|S|] by

us =


1

γjs∂x proxγjsgjs
(ẑjs ) − 1

γjs
if proxγjsgjs (ẑjs) 6= 0

0 otherwise,
(2.21)

B(s) = M1/2
:s γjs∂x proxγjsgjs

(
ẑjs

)
M1/2>

:s ∈ R|S|×|S|, (2.22)

and ẑ = β̂ − γ �∇f(β̂) ∈ Rp.

Proof (Lemma 2.17). From Assumption 2.12, we know there exists a neighborhood of
β̂j denoted U such that, for j ∈ S, the restriction of gj to U is C2 on U . In particular, it
means that β̂j is a differentiable point of gj and given a pair (u, v) ∈ U × Rp such that

u = proxγjgj (v) ∈ U , (2.23)

we have 1
γj

(v − u) ∈ ∂gj(u) becomes

1

γj
(v − u) = g′j(u)⇔ v = u+ γjg

′
j(u)⇔ v = (Id + g′j)(u) . (2.24)

Let H(u) = (Id + g′j)(u), since gj is twice differentiable at u, we have that

H ′(u) = 1 + γjg
′′
j (u) . (2.25)

Thus, H ′ : U 7→ R is continuous and then H : U 7→ R is continuously differentiable.
Hence F (v, u) , v −H(u) is C1 and F (v, u) = 0. By convexity of g, we have g′′j (u) ≥ 0
and

∂F

∂u
(v, u) = −H ′(u) = −1− γjg′′(u) 6= 0 . (2.26)

Using the implicit functions theorem, we have that there exists an open interval V ⊆ R
with v ∈ V and a function h : V 7→ R which is C1 such as u = h(v).
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Using (2.23) we thus have with the choice u = β̂j , v = β̂j − γj∇jf(β̂) that the map h
coincides with proxγjgj on V and is differentiable at v = β̂j − γj∇jf(β̂) ∈ V. It follows
that P(s) is differentiable at β̂S .

For all s ∈ [|S|], P(s) is differentiable at β̂S . In addition, P(s)(β̂S) = β̂S , thus

ψ , P(|S|) ◦ . . . ◦ P(1) , (2.27)

is also differentiable at β̂S . To compute, the Jacobian of P(s) at β̂S , let us first notice
that

JP(s)(β̂S)> =
(
e1 . . . es−1 vs es+1 . . . e|S|

)
, (2.28)

where vs = ∂x proxγjsgjs

(
ẑjs

)(
ejs − γjs∇2

js,:
f(β̂)

)
and ẑj = β̂j − γj∇jf(β̂). This

matrix can be rewritten as

JP(s)(β̂S) = Id|S|−ese>s + ∂x proxγjsgjs

(
ẑjs

)(
ese
>
s − γjsese>s ∇2f(β̂)

)
= Id|S|−ese>s γjs∂x proxγjsgjs

(
ẑjs

)(
diag(u) +∇2f(β̂)

)
= Id|S|−ese>s γjs∂x proxγjsgjs

(
ẑjs

)
M

= M−1/2

(
Id|S|−M1/2ese

>
s γjs∂x proxγjsgjs

(
ẑjs

)
M1/2

)
M1/2

= M−1/2
(

Id|S|−B(s)
)
M1/2 , (2.29)

where
M , ∇2

S,Sf(β̂) + diag (u) ∈ R|S|×|S| , (2.30)

and u ∈ R|S| is defined for all s ∈ [|S|] by

us =


1

γjs∂x proxγjsgjs
(ẑjs ) − 1

γjs
if proxγjsgjs (ẑjs) 6= 0

0 otherwise,
(2.31)

and
B(s) ,M1/2

:s γjs∂x proxγjsgjs

(
ẑjs

)
M1/2>

:s ∈ R|S|×|S|. (2.32)

The chain rule leads to

Jψ(β̂S) = JP(|S|)(β̂S)JP(|S|−1)(β̂S) . . .JP(1)(β̂S)

= M−1/2 (Id−B(|S|))(Id−B(|S|−1)) . . . (Id−B(1))︸ ︷︷ ︸
,A

M1/2 .

The next series of lemmas (Lemmas 2.18 (a) to 2.18 (d)) will be useful to bound the
spectral radius of the Jacobian of the fixed-point operator ψ (Lemma 2.18 (e)).

Lemma 2.18. a) The matrix M defined in (2.20) is symmetric definite positive.
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b) For all s ∈ [|S|], the spectral radius of the matrix B(s) defined in (2.22) is bounded
by 1, i.e., ‖B(s)‖2 ≤ 1.

c) For all s ∈ [|S|], B(s)/‖B(s)‖ is an orthogonal projector onto Span(M
1/2
:s ).

d) For all s ∈ [|S|] and for all u ∈ RS, if ‖(Id−B(s))u‖ = ‖u‖ then u ∈ Span(M
1/2
:s )⊥.

e) The spectral radius of the Jacobian Jψ(β̂S) of the fixed-point operator ψ is bounded
by 1

ρ(Jψ(β̂S)) < 1 . (2.33)

Proof (Lemma 2.18 (a)). Using the non-expansivity of the proximal operator, and
the property ∂x proxγjgj (ẑj) > 0 for j ∈ S, diag(u) is a symmetric semidefinite matrix,
so M is a sum of a symmetric definite positive matrix and a symmetric semidefinite
matrix, hence M is symmetric definite positive.

Proof (Lemma 2.18 (b)). B(s) is a rank one matrix which is the product of
γjs∂x proxγjsgj (ẑj)M

1/2
:s and M1/2>

:s , its non-zeros eigenvalue is thus given by

‖B(s)‖2 =
∣∣∣M1/2>

:s γjs∂x proxγjsgjs (ẑj)sM
1/2
:s

∣∣∣
=
∣∣∣γjs∂x proxγjsgjs (ẑjs)Ms,s

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
γjs∂x proxγjsgjs (ẑjs)

∇
2
j,jf(β̂)︸ ︷︷ ︸

0≤

+

 1

γjs∂x proxγjsgjs (ẑjs)
− 1

γjs


︸ ︷︷ ︸

0≤



∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.34)

By positivity of the two terms,

‖B(s)‖2 = γjs∂x proxγjsgjs (ẑjs)∇
2
j,jf(β̂)︸ ︷︷ ︸
≤Lj≤ 1

γjs

+
(

1− ∂x proxγjsgjs (ẑjs)
)

≤ ∂x proxγjsgjs (ẑjs) +
(

1− ∂x proxγjsgjs (ẑjs)
)

≤ 1 . (2.35)

Proof (Lemma 2.18 (c)). It is clear that B(s)/‖B(s)‖ is symmetric. We now prove
that it is idempotent, i.e., (B(s)/‖B(s)‖)2 = B(s)/‖B(s)‖.

(B(s)/‖B(s)‖)2 = (γj∂x proxγjgj (ẑj))
2M1/2

:s M1/2>
:s M1/2

:s M1/2>
:s /‖B(s)‖2

= (γj∂x proxγjgj (ẑj))‖B(s)‖M1/2
:s M1/2>

:s /‖B(s)‖2

= B(s)/‖B(s)‖ .
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Hence, B(s)/‖B(s)‖ is an orthogonal projector.

Proof (Lemma 2.18 (d)).

Id−B(s) = Id−‖B(s)‖ B(s)

‖B(s)‖

= (1− ‖B(s)‖) Id +‖B(s)‖2 Id−‖B(s)‖2
B(s)

‖B(s)‖2

= (1− ‖B(s)‖) Id +‖B(s)‖
(

Id− B(s)

‖B(s)‖2

)
︸ ︷︷ ︸

projection onto M1/2⊥
:s

. (2.36)

Let u /∈ Span(M
1/2
:s )⊥, then there exists α 6= 0, u

M
1/2⊥
:s
∈ Span(M

1/2
:s )⊥ such that

u = αM:s + u
M

1/2⊥
:s

. (2.37)

Combining Equations (2.36) and (2.37) leads to:

(Id−B(s))u = (1− ‖B(s)‖2)u+ ‖B(s)‖2uM1/2⊥
:s

‖(Id−B(s))u‖ ≤ |1− ‖B(s)‖2|︸ ︷︷ ︸
=(1−‖B(s)‖2)

‖u‖+ ‖B(s)‖2 ‖uM1/2⊥
:s
‖︸ ︷︷ ︸

<‖u‖

< ‖u‖ .

Proof (Lemma 2.18 (e)). Let u ∈ Rs such that

‖(Id|S|−B(|S|)) . . . (Id|S|−B(1))u‖ = ‖u‖ . (2.38)

Since

‖(Id|S|−B(|S|) . . . (Id|S|−B(1))‖2 ≤ ‖(Id|S|−B(|S|))‖2︸ ︷︷ ︸
≤1

× · · · × ‖(Id|S|−B(1))‖2︸ ︷︷ ︸
≤1

,

we thus have for all j ∈ S, ‖(Id|S|−B(s))u‖ = ‖u‖. One can thus successively apply
Lemma 2.18 (d) which leads to:

u ∈
⋂

s∈[|S|]

SpanM1/2
:s

⊥ ⇔ u ∈ Span

(
M

1/2
:1 , . . . ,M

1/2
:|S|

)⊥
.

Moreover M1/2 has full rank (see Lemma 2.18 (a)), thus u = 0 and

‖(Id|S|−B(|S|)) . . . (Id|S|−B(1))‖2 < 1 .

From Lemma 2.18 (e), ‖A‖2 < 1. Moreover A and Jψ(β̂S) are similar matrices (Equa-
tion (2.19)), then ρ(Jψ(β̂S)) = ρ(A) < 1.

Then all conditions (Lemmas 2.18 (e) and 2.17) are met to apply Polyak (1987, The-
orem 1, Section 2.1.2) which proves the local linear convergence.
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2.3.1 Differentiability outside the generalized support

For the sake of completeness, we also show that proxγjgj is differentiable on the comple-
ment of the generalized support at β̂j−∇jf(β̂). This lemma will be useful in Chapter 6
to derive an implicit differentiation formula.

Lemma 2.19. Consider a solution β̂ ∈ arg minβ∈Rp Φ(β) and S = Sβ̂. Suppose As-
sumptions 2.1 to 2.4, 2.12 and 2.15 hold.

Then, for all j ∈ Sc, proxγjgj is constant around β̂j − ∇jf(β̂). Moreover, the map
β 7→ proxγjgj (βj −∇jf(β)) is differentiable at β̂ with gradient 0.

Proof Let ∂gj(β̂j) = [a; b] and let ẑj = β̂j −∇jf(β̂), then combining the fixed point
equation and Assumption 2.4 leads to:

1

γj
(ẑj − β̂j) ∈ ri

(
∂gj(β̂j)

)
=]a; b[ . (2.39)

Thus,

ẑj ∈]γja+ β̂j ; γjb+ β̂j [ . (2.40)

For all v ∈]γja+β̂j ; γjb+β̂j [, we have 1
γj

(v−β̂j) ∈]a; b[= ri
(
∂gj(β̂j)

)
, i.e., proxγjgj (v) =

β̂j . As f is C2 in β̂, we have that β 7→ proxγjgj (βj −∇jf(β)) is differentiable at β̂ with
gradient being 0.

2.4 Experiments

We now illustrate Theorems 2.13 and 2.16 on multiple datasets and estimators: the
Lasso, the logistic regression and the SVM. In this section, we consider a design matrix
X ∈ Rn×p and a target y ∈ Rn for regression (Lasso) and y ∈ {−1, 1}n for classifica-
tion (logistic regression and support-vector machine). We used classical datasets from
libsvm (Chang and Lin, 2011) summarized in Table 2.1.

In Figures 2.1 to 2.3 the distance of the iterates to the optimum, ‖β(k) − β̂‖ as a function
of the number of iterations k is plotted as a solid blue line. The vertical red dashed line
represents the iteration k̂ where the model has been identified by CD (Algorithm 2.1)
illustrating Theorem 2.13. The yellow dashed line represents the theoretical linear
rate from Theorem 2.16. Theorem 2.16 gives the slope of the dashed yellow line, the
(arbitrary) origin point of the theoretical rate line is chosen such that blue and yellow
lines coincide at identification time, i.e., all lines intersect at this point. More precisely,
if k̂ denotes the iteration where model identification happens, the equation of the dashed
yellow line is:

h(k) = ‖β(k̂) − β̂‖ × ρ(Jψ(β̂S))(k−k̂) . (2.41)

Once a solution β̂ has been computed, one can calculate Jψ(β̂S) and its spectral radius
for each estimator.

For the experiments we used three different estimators that we detail here.
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Figure 2.1 – Lasso, linear convergence. Distance to optimum, ‖β(k) − β̂‖, as a
function of the number of iterations k, on 4 different datasets: leukemia, gisette, rcv1,
and real-sim.

Table 2.1 – Characteristics of the datasets.

Datasets #samples n #features p density
leukemia 38 7129 1
gisette 6000 4955 1
rcv1 20 242 19 959 3.6× 10−3

real-sim 72 309 20 958 2.4× 10−3

20news 5184 155 148 1.9× 10−3

Lasso. (Tibshirani, 1996) The most famous estimator based on a nonsmooth optimiz-
ation problem may be the Lasso. For a design matrix X ∈ Rn×p and a target y ∈ Rn
it writes:

arg min
β∈Rp

1

2n
‖Xβ − y‖2 + λ‖β‖1 . (2.42)

The CD update for the Lasso is given by

βj ← STγjλ
(
βj − γjX>:j (y −Xβ)

)
, (2.43)

where STλ(β) = sign(β) ·max(|β| − λ, 0). The solution of Equation (2.42) is obtained
using Algorithm 2.1 with constant stepsizes 1/γj =

‖X:j‖2
n .
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Figure 2.2 – Sparse logistic regression, linear convergence. Distance to optimum,
‖β(k) − β̂‖, as a function of the number of iterations k, on 4 different datasets: leukemia,
gisette, rcv1, and real-sim.

Sparse logistic regression. The sparse logistic regression is an estimator for classific-
ation tasks. It is the solution of the following optimization problem, for a design matrix
X ∈ Rn×p and a target variable y ∈ {−1, 1}n, with σ(z) , 1

1+e−z :

arg min
β∈Rp

− 1

n

n∑
i=1

log σ(yiβ
>Xi:) + λ‖β‖1 . (2.44)

The CD update for the sparse logistic regression is

βj ← STγjλ
(
βj − γjX>:j (y � (σ(y �Xβ)− 1))

)
. (2.45)

The constant stepsizes for the CD algorithm to solve Equation (2.44) are given by
1/γj =

‖X:j‖2
4n .

Support-vector machine. (Boser et al., 1992) The support-vector machine (SVM)
primal optimization problem is, for a design matrix X ∈ Rn×p and a target variable
y ∈ {−1, 1}n:

arg min
β∈Rp

1

2
‖β‖2 + C

n∑
i=1

max
(
1− yiXi:β, 0

)
. (2.46)

The SVM can be solved using the following dual optimization problem:

arg min
w∈Rn

1

2
w>(y �X)(y �X)>w −

n∑
i=1

wi +

n∑
i=1

ι0≤wi≤C . (2.47)
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Figure 2.3 – Support vector machine, linear convergence. Distance to optimum,
‖β(k) − β̂‖, as a function of the number of iterations k, on 4 different datasets: leukemia,
gisette, rcv1 and 20news.

Table 2.2 – C values for SVM.

dataset leukemia gisette rcv1 20news
C value 10 1.5 10−2 1.5 10−2 5 10−1

The CD update for the SVM reads:

wi ← P[0,C]

(
wi − γi((y �X)>i: (y �Xw)− 1

)
) , (2.48)

where P[0,C](x) = min(max(0, x), C). The stepsizes of the CD algorithm to solve Equa-
tion (2.47) are given by 1/γi = ‖(y �X)i:‖2. The values of the regularization parameter
C for each dataset from Figure 2.3 are given in Table 2.2.

Comments on Figures 2.1 to 2.3. Finite time model identification and local linear
convergence are illustrated on the Lasso, the sparse logistic regression and the SVM
in Figures 2.1 to 2.3. As predicted by Theorem 2.13, the relative model is identified
after a finite number of iterations. For the Lasso (Figure 2.1) and the sparse logistic
regression (Figure 2.2), we observe that as the regularization parameter gets smaller,
the number of iterations needed by the CD algorithm to identify the model increases.
To our knowledge, this is a classical empirical observation, that is not backed up by
theoretical results. After identification, the convergence towards a solution is linear
as predicted by Theorem 2.16. The theoretical local speed of convergence provided
by Theorem 2.16 seems like a sharp estimation of the true speed of convergence as
illustrated by the three figures.

Note that on Figures 2.1 to 2.3 high values of λ (or small values of C) were required for
the restricted injectivity Assumption 2.15 to hold. Indeed, despite its lack of theoretical
foundation, it is empirically observed that, in general, the larger the value of λ, the
smaller the cardinal of the generalized support: |S|. It makes the restricted injectivity
Assumption 2.15: ∇2

S,Sf(β̂) � 0 easier to be satisfied. For instance, for λ = λmax/20,
the restricted injectivity Assumption 2.15 was not verified for a lot of datasets for the
Lasso and the sparse logistic regression (Figures 2.1 and 2.2). In the same vein, values
of C for the SVM had to be chosen small enough, in order to make |S| not too large
(Figure 2.3).

Note that finite time model identification is crucial to ensure local linear convergence, see
for instance 20news dataset on Figure 2.3. However there exists very few quantitative
theoretical results for the convergence speed of the model identification. Nutini et al.
(2019); Sun et al. (2019) tried to obtain some rates on the identification, quantifying
“how much the problem is qualified”, i.e., how much Assumption 2.4 is satisfied. But
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these theoretical results do not seem to explain fully the experimental results of the
CD: in particular the identification speed of the model compared to other algorithms.

Limits. We would like to point out the limit of our analysis illustrated for the case of
λ = λmax/15 for the sparse logistic regression and the rcv1 dataset in Figure 2.2. In
this case, the solution may no longer be unique. The support gets larger and Assump-
tion 2.15 is no longer met. In this case, the largest eigenvalue of Jψ(β̂S) is exactly one,
which leads to the constant rate observed in Figure 2.2. Despite the largest eigenvalue
being exactly 1, a regime of locally linear convergence toward a (potentially non unique)
minimizer is still observed. Linear convergence of non-strongly convex functions starts
to be more and more understood (Necoara et al., 2019). Figure 2.2 with λ = λmax/15
for rcv1 suggests extensions of Necoara et al. (2019) could be possible in the nonsmooth
case.

2.5 Conclusion

In conclusion, we show finite time model identification for coordinate descent Al-
gorithm 2.1 (Theorem 2.13). Thanks to this identification property we were able to
show local linear rates of convergence (Theorem 2.16). These two theoretical results
were illustrated on popular estimators (Lasso, sparse logistic regression and SVM dual)
and popular machine learning datasets (Section 2.4).

A first natural extension of this chapter would be to investigate block coordinate min-
imization: Theorem 2.13 could be extended for blocks under general partial smoothness
assumption (Hare and Lewis, 2004). However, it seems that Theorem 2.16 would re-
quire a more careful analysis. A second extension could be to show linear convergence
without the restricted injectivity (Assumption 2.15), paving the way for a generalization
of Necoara et al. (2019) as suggested by Figure 6.4.
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Acceleration of first order methods is mainly obtained via inertia à la Nesterov, or via
nonlinear extrapolation. The latter has known a recent surge of interest, with success-
ful applications to gradient and proximal gradient techniques. On multiple machine
learning problems, coordinate descent achieves performance significantly superior to
full-gradient methods. Speeding up coordinate descent in practice is notoriously hard:
inertially accelerated versions of coordinate descent are theoretically accelerated, but
might not always lead to practical speed-ups. Capitalizing on the identification (The-
orem 2.13) and local linear convergence (Theorem 2.16) from Chapter 2, we propose an
accelerated version of coordinate descent using Anderson extrapolation.
This chapter is based on the following work, accepted at AISTATS 2021:

• Q. Bertrand and M. Massias. Anderson acceleration of coordinate descent. In
AISTATS, 2021

3.1 Introduction

Gradient descent is the workhorse of modern convex optimization (Nesterov, 2004; Beck,
2017). For composite problems, proximal gradient descent retains the nice properties
enjoyed by the latter. In both techniques, inertial acceleration achieves accelerated
convergence rates (Nesterov, 1983; Beck and Teboulle, 2009).

Coordinate descent is a variant of gradient descent, which updates the iterates one co-
ordinate at a time (Tseng and Yun, 2009b; Friedman et al., 2010). Proximal coordinate
descent has been applied to numerous machine learning problems (Shalev-Shwartz and
Zhang, 2013a; Wright, 2015; Shi et al., 2016), in particular the Lasso (Tibshirani, 1996),
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elastic net (Zou and Hastie, 2005) or sparse logistic regression (Ng, 2004). It is used
in preeminent packages such as scikit-learn (Pedregosa et al., 2011), glmnet (Friedman
et al., 2009), libsvm (Fan et al., 2008) or lightning (Blondel and Pedregosa, 2016). On
the theoretical side, inertial accelerated versions of coordinate descent (Nesterov, 2012;
Lin et al., 2014; Fercoq and Richtárik, 2015) achieve accelerated rates. Note that usual
lower bounds (Nesterov, 2004, Sec. 2.1.2) are derived for algorithms with iterates lying
in the span of previous gradients, which is not the case for coordinate descent. However
there also exists similar lower bounds for cyclic coordinate descent (Sun and Ye, 2019).
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Figure 3.1 – Suboptimality along time for a quadratic problem on the 5000 first fea-
tures of the rcv1 dataset. GD: gradient descent, CD: cyclic coordinate descent, RCD:
randomized coordinate descent.

To obtain accelerated rates, Anderson extrapolation (Anderson, 1965) is an alternative
to inertia: it provides acceleration by exploiting the iterates’ structure. This procedure
has been known for a long time, under various names and variants (Wynn, 1962; Eddy,
1979; Smith et al., 1987), see Sidi (2017); Brezinski et al. (2018) for reviews. Anderson
acceleration enjoys accelerated rates on quadratics (Golub and Varga, 1961), but theor-
etical guarantees in the nonquadratic case are weaker (Scieur et al., 2016). Interestingly,
numerical performance still shows significant improvements on nonquadratic objectives.
Anderson acceleration has been adapted to various algorithms such as Douglas-Rachford
(Fu et al., 2019), ADMM (Poon and Liang, 2019) or proximal gradient descent (Zhang
et al., 2018; Mai and Johansson, 2019; Poon and Liang, 2020). Among main benefits,
the practical version of Anderson acceleration is memory efficient, easy to implement,
line search free, has a low cost per iteration and does not require knowledge of the
strong convexity constant. Finally, it introduces a single additional parameter, which
often does not require tuning (see Section 3.3.1).

In this work:

• We propose an Anderson acceleration scheme for cyclic coordinate descent, which,
as visible on Figure 3.1, outperforms inertial and extrapolated gradient descent,
as well as inertial and randomized coordinate descent.

• The acceleration is obtained even though the iteration matrix is not symmetric,
a notable problem in the analysis of Anderson extrapolation.
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Algorithm 3.1 Offline Anderson extrapol-
ation
init: β(0) ∈ Rp
for k = 1, . . . do

// regular linear iteration

β(k) = Tβ(k−1) + b
U = [β(1) − β(0), . . . , β(k) − β(k−1)]
// solve a linear system of size k

c = (U>U)−11k ∈ Rk
c /= 1>k c
// does not affect β(k)

β
(k)
e−off =

∑k
i=1 ciβ

(i)

return β
(k)
e−off

Algorithm 3.2 Online Anderson extrapol-
ation
init: β(0) ∈ Rp,K ∈ N
for k = 1, . . . do

// regular iteration

β(k) = Tβ(k−1) + b
if k = 0 modK then

U = [β(k−K+1) − β(k−K), . . . ,
β(k) − β(k−1)]

// solve a linear system of size K

c = (U>U)−11K ∈ RK
c /= 1>Kc

β
(k)
e−on =

∑K
i=1 ciβ

(k−K+i)

// base sequence changes

β(k) = β
(k)
e−on

return β(k)

(a) Offline.
(b) Online.

Figure 3.2 – Illustrations of offline (left) and online (right) Anderson extrapolation.

• We empirically highlight that the proposed acceleration technique can general-
ize in the non-quadratic case (Algorithm 3.3) and significantly improve proximal
coordinate descent algorithms (Section 3.3), which are state-of-the-art first order
methods on the considered problems.

Notation. The vector of size K with all one entries is written 1K .

3.2 Anderson extrapolation

3.2.1 Background

Anderson extrapolation is designed to accelerate the convergence of sequences based on
fixed point linear iterations, that is:

β(k+1) = Tβ(k) + b , (3.1)

where the iteration matrix T ∈ Rp×p has spectral radius ρ(T ) < 1. There exist two
variants: offline and online, which we recall briefly.
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Offline extrapolation (Algorithm 3.1 and Figure 3.2a), at iteration k, looks for a fixed
point as an affine combination of the k first iterates: β(k)

e−off =
∑k

1 c
(k)
i β(i−1), and solves

for the coefficients c(k) ∈ Rk as follows:

c(k) = arg min∑k
1 ci=1

‖∑k
1 ciβ

(i−1) − T∑k
1 ciβ

(i−1) − b‖2

= arg min∑k
1 ci=1

‖∑k
1 ci

(
β(i) − β(i−1)

)
‖2

= (U>U)−11k/1
>
k (U>U)−11k , (3.2)

where U = [β(1) − β(0), . . . , β(k) − β(k−1)] ∈ Rp×k (and hence the objective rewrites∥∥Uc∥∥2). In practice, since β(k) is available when c(k) is computed, one uses β(k)
e =∑k

1 c
(k)
i β(i) instead of

∑k
1 c

(k)
i β(i−1). The motivation for introducing the coefficients

c(k) is discussed in more depth after Prop. 6 in Massias et al. (2020b), and details
about the closed-form solution can be found in Scieur et al. (2016, Lem. 2.4). In offline
acceleration, more and more base iterates are used to produce the extrapolated point,
but the extrapolation sequence does not affect the base sequence. This may not scale
well since it requires solving larger and larger linear systems.

A more practical variant is the online version (Algorithm 3.2 and Figure 3.2b) considered
in this chapter. The number of points to be extrapolated is fixed to K; β(1), . . . , β(K)

are computed normally with the fixed point iterations, but β(K)
e is computed by ex-

trapolating the iterates from β(1) to β(K), and β(k) is taken equal to β(K)
e . K normal

iterates are then computed from β(K+1) to β(2K) then extrapolation is performed on
these last K iterates, etc.

As we recall below, results on Anderson acceleration mainly concern fixed-point it-
erations with symmetric iteration matrices T , and results concerning non-symmetric
iteration matrices are weaker (Bollapragada et al., 2018). Poon and Liang (2020, Thm
6.4) do not assume that T is symmetric, but only diagonalizable, which is still a strong
requirement.

Proposition 3.1 (Symmetric T , Scieur 2019). Let the iteration matrix T be symmetric
semi-definite positive, with spectral radius ρ = ρ(T ) < 1. Let β̂ be the limit of the
sequence (β(k)). Let ζ = (1−√1− ρ)/(1+

√
1− ρ). Then the iterates of offline Anderson

acceleration satisfy, with B = (Id−T )2,

‖β(k)
e−off − β̂‖B ≤ 2ζk−1

1+ζ2(k−1) ‖β(0) − β̂‖B , (3.3)

and those of online extrapolation satisfy:

‖β(k)
e−on − β̂‖B ≤

(
2ζK−1

1+ζ2(K−1)

)k/K
‖β(0) − β̂‖B . (3.4)

Scieur et al. (2016) showed that the offline version in Proposition 3.1 matches the
accelerated rate of the conjugate gradient (Hestenes and Stiefel, 1952). As it states,
gradient descent can be accelerated by Anderson extrapolation on quadratics.
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Application to quadratics The canonical application of Anderson extrapolation is
gradient descent on quadratics. Consider a quadratic problem, with b ∈ Rp, H ∈ Sp++

such that H � 0, L denotes the largest eigenvalue of H, L , ‖H‖2:

β̂ = arg min
β∈Rp

1

2
β>Hβ + 〈b, β〉 . (3.5)

A typical instance is overdetermined least squares with full-column rank design matrix
X ∈ Rn×p, and observations y ∈ Rn, such that H = X>X and b = −X>y. On
Problem (3.5) gradient descent with step size 1/L reads:

β(k+1) =
(

Idp− 1
LH
)

︸ ︷︷ ︸
TGD∈Sp+

β(k) + (−b/L︸ ︷︷ ︸
bGD

) . (3.6)

Because they have this linear structure, iterates of gradient descent can benefit from
Anderson acceleration, observing that the fixed point of β 7→ TGDβ + bGD solves (3.5),
with TGD ∈ Sp+. Anderson acceleration of gradient descent has therefore been well-
studied beyond the scope of machine learning (Pulay, 1980; Eyert, 1996). However, on
many machine learning problems, coordinate descent achieves far superior performance,
and it is interesting to determine whether or not it can also benefit from Anderson
extrapolation.

3.2.2 Linear iterations of coordinate descent

To apply Anderson acceleration to coordinate descent, we need to show that its iterates
satisfy linear iterations as in (3.6). An epoch of cyclic coordinate descent for Prob-
lem (3.5) consists in updating the vector x one coordinate at a time, sequentially, i.e.
for j = 1, . . . , p:

βj ← βj −
1

Hjj
(Hj:β + bj) , (3.7)

which can be rewritten, for j = 1, . . . , p:

β ←

Idp−
eje
>
j

Hjj
H

β − bj
Hjj

ej . (3.8)

Thus, for primal iterates, one full pass (updating coordinates from 1 to p) leads to a
linear iteration (as in Lemma 1.7 from Chapter 1), for some bCD ∈ Rp:

β(k+1) = TCDβ(k) + bCD , (3.9)

with

TCD ,

(
Idp−

epe
>
p

Hpp
H

)
. . .

(
Idp− e1e>1

H11
H

)
. (3.10)

Note that in the case of coordinate descent we write β(k) for the iterates after one pass
of coordinate descent on all features, and not after each update (3.7). The iterates
of cyclic coordinate descent therefore also have a fixed-point structure, but contrary
to gradient descent, their iteration matrix TCD is not symmetric, which we address in
Section 3.2.3. Note that random coordinate descent does not exhibit such a fixed-point
structure.
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3.2.3 Anderson extrapolation for nonsymmetric iteration matrices

Even on quadratics, Anderson acceleration with non-symmetric iteration matrices is
less developed, and the only results concerning its theoretical acceleration are recent
and weaker than in the symmetric case.

Proposition 3.2 (Bollapragada et al. 2018, Thm 2.2). When T is not symmetric, and
ρ(T ) < 1,

‖β(k)
e−off − Tβ

(k)
e−off − b‖ ≤ ‖Id−ρ(T − Id)‖2‖P ∗(T )(β(1) − β(0))‖ ,

where the unavailable polynomial P ∗ minimizes ‖P (T )(β(1) − β(0))‖ amongst all poly-
nomials P of degree exactly k − 1 whose coefficients sum to 1.

The quality of the bound (in particular, its eventual convergence to 0) crucially depends
on ‖P (T )‖. Using the Crouzeix conjecture (Crouzeix, 2004), Bollapragada et al. (2018)
managed to bound ‖P (T )‖, with P a polynomial:

‖P (T )‖ ≤ c max
z∈W (T )

|P (z)| , (3.11)

with c ≥ 2 (Crouzeix, 2007; Crouzeix and Palencia, 2017), and W (T ) the numerical
range:

W (T ) , {β∗Tβ : ‖β‖2 = 1, β ∈ Cp} . (3.12)

Since there is no general formula for this bound, Bollapragada et al. (2018) used nu-
merical bounds on W (T q) to ensure convergence. Figure 3.3 displays the numerical
range W (T q) in the complex plane for q ∈ {1, 128, 256, 512}. In order to be able to
apply the theoretical result from Bollapragada et al. (2018), one must chose q such that
the point (1, 0) is not contained in W (T q), and extrapolate β(0), β(q), β(2q), . . . One can
see on Figure 3.3 that large values of q are needed, unusable in practice: q = 512 is
greater than the number of iterations needed to converge on some problems. Moreover,
Anderson acceleration seems to provide speed up on coordinate descent even with q = 1
as we perform, which highlights the need for refined bounds for Anderson acceleration
on nonsymmetric matrices.

We propose two means to fix this lack of theoretical results: to modify the algorithm in
order to have a more amenable iteration matrix (Section 3.2.4), or to perform a simple
cost function decrease check (Section 3.2.5).

3.2.4 Pseudo-symmetrization of T

A first idea to make coordinate descent theoretically amenable to extrapolation is to
perform updates of coefficients from indices 1 to p, followed by a reversed pass from p
to 1. This leads to an iteration matrix which is not symmetric either but friendlier: it
writes

TCD-sym ,

(
Idp−

e1e
>
1

H11
H

)
× · · · ×

(
Idp− epe>p

Hpp
H

)(
Idp−

epe
>
p

Hpp
H

)
× · · · ×

(
Idp− e1e>1

H11
H

)
= H−1/2SH1/2 , (3.13)
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Figure 3.3 – Numerical range of T q

as q varies; T is the iteration mat-
rix of Ridge regression problems with
conditioning κ = 103, on 4 datasets.
The black cross marks the (1, 0) point,
which should lie outside the range for
the theoretical bound to be useful.

with

S =

(
Idp−H1/2 e1e

>
1

H11
H

1
2

)
× · · · ×

(
Idp−H

1
2
epe>p
Hpp

H
1
2

)
×
(

Idp−H
1
2
epe>p
Hpp

H
1
2

)
× · · · ×

(
Idp−H

1
2
e1e>1
H11

H
1
2

)
. (3.14)

S is symmetric, thus, S and T (which has the same eigenvalues as S), are diagonalisable
with real eigenvalues. We call these iterations pseudo-symmetric, and show that this
structure allows to preserve the guarantees of Anderson extrapolation.

Proposition 3.3 (Pseudosym. T = H−1/2SH1/2). Let T be the iteration matrix of
pseudo-symmetric coordinate descent: T = H−1/2SH1/2, with S the symmetric positive
semidefinite matrix of (3.13). Let β̂ be the limit of the sequence (β(k)). Let ζ = (1 −√

1− ρ)/(1 +
√

1− ρ). Then ρ = ρ(T ) = ρ(S) < 1 and the iterates of offline Anderson
acceleration satisfy, with B = (T − Id)>(T − Id) � 0:

‖β(k)
e−off − β̂‖B ≤

√
κ(H) 2ζk−1

1+ζ2(k−1) ‖β(0) − β̂‖B , (3.15)

and thus those of online extrapolation satisfy:

‖β(k)
e−on − β̂‖B ≤

(√
κ(H) 2ζK−1

1+ζ2(K−1)

)k/K
‖β(0) − β̂‖B . (3.16)

Proof (Proposition 3.3). First we link the quantity computed in Equation (3.2) to
the extrapolated quantity

∑k
i=1 ciβ

(i−1) (Lemma 3.4 (a)), then we bound ‖β(k)
e−on − β̂‖B

(Lemma 3.4 (b)).

Lemma 3.4. a) For all c ∈ Rk such that
∑k

i=1 ci = 1:

k∑
i=1

ci(β
(i) − β(i−1)) = (T − Id)

 k∑
i=1

ciβ
(i−1) − β̂

 . (3.17)

b) For all c ∈ Rk such that
∑k

i=1 ci = 1,

‖(T − Id)(β
(k)
e−off − β̂)‖ ≤

√
κ(H)

∥∥∥∥ k−1∑
i=0

ciS
i

∥∥∥∥‖(T − Id)(β(0) − β̂)‖ . (3.18)
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Here we link the quantity computed in Equation (3.2) to the extrapolated quantity∑k
i=1 ciβ

(i−1).

Proof (Lemma 3.4 (a)). Since β(i) = Tβ(i−1) + (β̂ − T β̂),

ci(β
(i) − β(i−1)) = ci(Tβ

(i−1) + β̂ − T β̂ − β(i−1))

= (T − Id)ci(β
(i−1) − β̂) . (3.19)

Hence, since
∑k

1 ci = 1,

k∑
i=1

ci(β
(i) − β(i−1)) = (T − Id)

 k∑
i=1

ciβ
(i−1) − β̂

 . (3.20)

Here we bound ‖β(k)
e−on − β̂‖B.

Proof (Lemma 3.4 (b)). In this proof, we denote by c∗ the solution of (3.2). We use
the fact that for all c ∈ Rk such that

∑k
i=1 ci = 1,

‖
k∑
i=1

c∗i (β
(i) − β(i−1))‖ = min

c∈Rk∑
i ci=1

‖
k∑
i=1

ci(β
(i) − β(i−1))‖ ≤ ‖

k∑
i=1

ci(β
(i) − β(i−1))‖ .

(3.21)

Then we use twice Lemma 3.4 (a) for the left-hand and right-hand side of Equa-
tion (3.21). Using Lemma 3.4 (a) with the c∗i minimizing Equation (3.2) we have for all
ci ∈ R such that

∑k
i=1 ci = 1 :

‖(T − Id)(βe − β̂)‖ = ‖
k∑
i=1

c∗i (β
(i) − β(i−1))‖

≤ ‖
k∑
i=1

ci(β
(i) − β(i−1))‖

= ‖(T − Id)
k∑
i=1

ci(β
(i−1) − β̂)‖

= ‖(T − Id)

k∑
i=1

ciT
i−1(β(0) − β̂)‖

= ‖
k∑
i=1

ciT
i−1(T − Id)(β(0) − β̂)‖

= ‖
k∑
i=1

ciT
i−1‖ × ‖(T − Id)(β(0) − β̂)‖

≤ ‖H−1/2
k∑
i=1

ciS
i−1H1/2‖ × ‖(T − Id)(β(0) − β̂)‖

≤
√
κ(H)‖

k∑
i=1

ciS
i−1‖ × ‖(T − Id)(β(0) − β̂)‖ . (3.22)
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Figure 3.4 – OLS, rcv1. Suboptimality
as a function of time on the 5000 first
columns of the dataset rcv1.
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Figure 3.5 – `2-regularized logistic re-
gression, real-sim. Suboptimality as
a function of time on the 2000 first fea-
tures of the real-sim dataset, Tikhonov
strength set so that κ = 105.

Finally, to conclude the proof of Proposition 3.3, we apply Lemma 3.4 (b) by choosing
ci equal to the Chebyshev weights cCbi . Using the proof of Barré et al. (2020, Prop. B.

2), we have, with ζ =
1−
√

1−ρ(T )

1+
√

1−ρ(T )
:

‖
k∑
i=1

cCbi Si−1‖ ≤ 2ζk−1

1+ζ2(k−1) . (3.23)

Combined with Lemma 3.4 (b) this concludes the proof:

‖(T − Id)(βe − β̂)‖ ≤
√
κ(H)‖

k∑
i=1

ciS
i−1‖‖(T − Id)(β(0) − β̂)‖ (3.24)

≤
√
κ(H) 2ζk−1

1+ζ2(k−1) ‖(T − Id)(β(0) − β̂)‖ . (3.25)

Proposition 3.3 shows accelerated convergence rates for the offline Anderson accelera-
tion, but a

√
κ(H) appears in the rate of the online Anderson acceleration, meaning

that K must be large enough that ζK mitigates this effect. This factor however
seems like a theoretical artefact of the proof, since we observed significant speed up
of the online Anderson acceleration, even with bad conditioning of H (see Figure 3.4).

Figure 3.4 illustrates the convergence speed of cyclic and pseudo-symmetric coordinate
descent on the rcv1 dataset. Anderson acceleration provides speed up for both versions.
Interestingly, on this quadratic problem, the non extrapolated pseudo-symmetric itera-
tions perform poorly, worse than cyclic coordinate descent. However, the performance is
reversed for their extrapolated counterparts: the pseudo-symmetrized version is better
than the cyclic one (which has a nonsymmetric iteration matrix). Finally, Anderson
extrapolation on the pseudo-symmetrized version even reaches the conjugate gradient
performance.
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Algorithm 3.3 Online Anderson proximal gradient descent (proposed)
init: β(0) ∈ Rp
for k = 1, . . . do

β = β(k−1)

for j = 1, . . . p do
βold
j = βj
βj = prox λ

Lj
gj

(βj −X>:j∇F (Xβ)/Lj)

Xβ += (βj − βold
j )X:j

β(k) = β // regular iter. O(np)
if k = 0 modK then // extrapol., O(K3 + pK2)

U = [β(k−K+1) − β(k−K), . . . , β(k) − β(k−1)]
c = (U>U)−11K/1

>
K(U>U)−11K ∈ RK

βe =
∑K

i=1 ciβ
(k−K+i)

if F (Xβe) + λg(βe) ≤ F (β(k)) + λg(β(k)) then
β(k) = βe

return β(k)

3.2.5 Generalization to nonquadratic and proposed algorithm

After devising and illustrating an Anderson extrapolated coordinate descent procedure
for a simple quadratic objective, our goal is to apply Anderson acceleration on problems
where coordinate descent achieve state-of-the-art results, i.e., of the form:

min
β∈Rp

Φ(β) = f(β) + λg(β) , F (Xβ) + λ

p∑
j=1

gj(βj) ,

where F : Rn → R is convex, smooth and gj ’s are proper, closed and convex functions
As examples, we allow g = 0, g = ‖β‖1, g = 1

2‖β‖22, g = ‖β‖1 + ρ
2λ‖x‖2.

In the nonquadratic case, updates of proximal coordinate descent do not lead to a linear
iteration. In this case, T is not a matrix, but a nonlinear operator. However, as stated
in Proposition 3.5, asymptotically, the fixed-point operator T is linear.

Proposition 3.5. Consider a solution β̂ ∈ arg minβ∈Rp Φ(β). Suppose

1. Assumptions 2.1 to 2.4, 2.12 and 2.15 hold.

2. The sequence (β(k))k≥0 generated by Algorithm 2.1 converges to β̂.

Then there exists K ∈ N, ψ : R|S| → R|S| (defined in Equation (2.18)) such that, for all
k ∈ N, k ≥ K:

β
(k)
j = β̂j , for all j ∈ Sc, (3.26)

β
(k+1)
S − β̂S = Jψ(β̂S)(β

(k)
S − β̂S) +O(‖β(k)

S − β̂S‖2) , (3.27)

and

ρ
(
Jψ(β̂S)

)
< 1 . (3.28)
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Proof Proposition 3.5 is a direct consequence of Theorems 2.13 and 2.16.

Figure 3.5 shows the performance of Anderson extrapolation on a `2-regularized logistic
regression problem:

arg min
β∈Rp

n∑
i=1

log(1 + e−yiXi:β) +
λ

2

∥∥β∥∥2

2
. (3.29)

One can see that despite the better theoretical properties of the pseudo-symmetrized
coordinate descent, Anderson acceleration on coordinate descent seems to work better
on the cyclic coordinate descent. We thus choose to apply Anderson extrapolation on
the cyclic coordinate descent (Algorithm 3.3), while adding a step checking the decrease
of the objective function in order to ensure convergence.

Finally, we can also use Algorithm 3.3 in the non smooth case where g = ‖·‖1, since
coordinate descent achieves support identification when the solution is unique, after
which the objective becomes differentiable. There is therefore a linear structure after a
sufficient number of iterations.

3.3 Experiments

An implementation relying on numpy, numba and cython (McKinney, 2012; Lam et al.,
2015; Behnel et al., 2011), with scripts to reproduce the figures, is available at: https:
//mathurinm.github.io/andersoncd.

We first show how we set the hyperparameters of Anderson extrapolation (Section 3.3.1).
Then we show that Anderson extrapolation applied to proximal coordinate descent
outperforms other first order algorithms on standard machine learning problems (Sec-
tion 3.3.2).

3.3.1 Parameter setting

Anderson extrapolation relies on 2 hyperparameters: the number of extrapolated points
K, and the amount of regularization eventually used when solving the linear system to
obtain the coefficients c ∈ RK . Based on the conclusions of this section, we fix these
parameters for all the subsequent experiments in Section 3.3.2: no regularization and
K = 5.

Influence of the regularization. Scieur et al. (2016) provided accelerated com-
plexity rates for regularized Anderson extrapolation: a term λreg ‖c‖2 is added to
the objective of Equation (3.2). The closed-form formula for the coefficients is then
(U>U + λreg IdK)−11K/1

>
K(U>U + λreg IdK)−11K .

However, similarly to Mai and Johansson (2019) and Poon and Liang (2020) we ob-
served that regularizing the linear system does not seem necessary, and can even hurt
the convergence speed. Figure 3.7 shows the influence of the regularization parameter
on the convergence on the rcv1 dataset for a sparse logistic regression problem, with
K = 5 and λ = λmax/30. The more the optimization problem is regularized, the
more the convergence speed is deteriorated. Thus we choose not to regularize when
solving the linear system for the extrapolation coefficients. We simply check if the ex-

https://mathurinm.github.io/andersoncd
https://mathurinm.github.io/andersoncd
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Figure 3.6 – Influence of K, quad-
ratic, rcv1. Influence of the number of
iterates K used to perform Anderson ex-
trapolation with coordinate descent (CD)
on a quadratic with the rcv1 dataset
(2000 first columns).
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Figure 3.7 – Influence of λreg, sparse
logitic regression, rcv1. Influence of
the regularization amount when solving
a sparse logistic regression using Ander-
son extrapolation with proximal coordin-
ate descent (PCD) on the rcv1 dataset,
K = 5, λ = λmax/30.

trapolated point yields a lower objective function than the current regular iterate (see
Algorithm 3.3).

Influence of K. Figure 3.6 shows the impact of K on the convergence speed. Al-
though the performance depends on K, it seems that the dependency is loose, as for
K ∈ {10, 20} the acceleration is roughly the same. Therefore, we do not treat K as a
parameter and fix it to K = 5.

Computational overhead of Anderson extrapolation. With nnz the number
of nonzero coefficients, K epochs (i.e., K updates of all coordinates) of CD without
Anderson acceleration cost:

Knnz(X) .

Every K epochs, Algorithm 3.3 requires to solve a K × K linear system. Thus, K
epochs of CD with Anderson acceleration cost:

Knnz(X)︸ ︷︷ ︸
K passes of CD

+ K2nnz(w)︸ ︷︷ ︸
form U>U

+ K3︸︷︷︸
solve system

.

With our choice, K = 5, the overhead of Anderson acceleration is marginal compared
to a gradient call: K2 + Knnz(w) � nnz(X). This can be observed in Figures 3.8
to 3.10: even before acceleration actually occurs, Anderson PCD is not slower than
regular PCD.

3.3.2 Numerical comparison on machine learning problems

We compare multiple algorithms to solve popular machine learning problems: the Lasso,
the elastic net, the sparse logistic regression and the group Lasso. The compared al-
gorithms are the following:
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• Proximal gradient descent (PGD, Lions and Mercier 1979; Combettes and Wajs
2005).

• Nesterov-like inertial PGD (FISTA, Beck and Teboulle 2009).

• Anderson accelerated PGD (Mai and Johansson, 2019; Poon and Liang, 2020).

• Proximal coordinate descent (PCD, Tseng and Yun 2009b).

• Proximal coordinate descent with random index selection (PRCD, Richtárik and
Takáč 2014).

• Inertial PCD (Lin et al., 2014; Fercoq and Richtárik, 2015).

• Anderson accelerated PCD (ours, Algorithm 3.3).

We use datasets from libsvm (Fan et al., 2008) and openml (Feurer et al., 2019)
(Table 3.1), varying as much as possible to demonstrate the versatility of our approach.

Table 3.1 – Datasets characteristics

name n p density

gina agnostic 3468 970 1
hiva agnostic 4229 1617 1
leukemia 72 7129 1
rcv1_train 20 242 19 960 3.7 10−3

real-sim 72 309 20 958 2.4 10−3

news20 19 996 632 983 6.1 10−4

Lasso. Figure 3.8 shows the suboptimality Φ(β(k)) − Φ(β̂) of the algorithms on the
Lasso problem:

arg min
β∈Rp

1

2
‖y −Xβ‖2 + λ

∥∥β∥∥
1
, (3.30)

as a function of time for multiple datasets and values of λ. We parametrize λ as a
fraction of λmax = ‖X>y‖∞, smallest regularization strength for which β̂ = 0. Fig-
ure 3.8 highlights the superiority of proximal coordinate descent over proximal gradient
descent for Lasso problems on real-world datasets, and the benefits of extrapolation for
coordinate descent. It shows that Anderson extrapolation can lead to a significant gain
of performance. In particular Figure 3.8 shows that without restart, inertial coordinate
descent (Lin et al., 2014; Fercoq and Richtárik, 2015) can slow down the convergence,
despite its accelerated rate. Note that the smaller the value of λ, the harder the op-
timization: when λ decreases, more time is needed to reach a fixed suboptimality. The
smaller λ is (i.e., the harder the problem), the more efficient Anderson extrapolation is.

Elastic net. Anderson extrapolation is easy to extend to other estimators than the
Lasso. Figure 3.9 show the superiority of the Anderson extrapolation approach over
proximal gradient descent and its accelerated version for the elastic net problem (Zou
and Hastie, 2005):

arg min
β∈Rp

1

2
‖y −Xβ‖2 + λ‖β‖1 +

ρ

2
‖β‖22 . (3.31)
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Figure 3.8 – Lasso, suboptimality. Suboptimality as a function of time for the Lasso
on multiple datasets and values of λ.
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Figure 3.9 – Enet, suboptimality. Suboptimality as a function of time for the elastic
net on Leukemia dataset, for multiple values of λ and ρ.

In particular, we observe that the more difficult the problem, the more useful the An-
derson extrapolation: it is visible on Figure 3.9 that going from ρ = λ/10 to ρ = λ/100
lead to an increase in time to achieve similar suboptimality for the classical proximal
coordinate descent, whereas the impact is more limited on the coordinate descent with
Anderson extrapolation.

Finally, for a nonquadratic data-fit, here sparse logistic regression, we still demonstrate
the applicability of extrapolated coordinate descent.
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Figure 3.10 – `1-regularised logistic regression, suboptimality. Suboptimality as
a function of time for `1-regularized logistic regression on multiple datasets and values
of λ.

Sparse logistic regression. Figure 3.10 represents the suboptimality as a function
of time on a sparse logistic regression problem:

arg min
β∈Rp

n∑
i=1

log(1 + e−yiXi:β) + λ
∥∥β∥∥

1
, (3.32)

for multiple datasets and values of λ. We parametrize λ as a fraction of λmax =
‖X>y‖∞/2. As for the Lasso and the elastic net, the smaller the value of λ, the harder
the problem and Anderson CD outperforms its competitors.

Group Lasso. In this section we consider the group Lasso, with a design matrix
X ∈ Rn×p, a target y ∈ Rn, and a partition G of [p] (elements of the partition being
the disjoints groups):

arg min
β∈Rp

1

2
‖y −Xβ‖2 + λ

∑
g∈G
‖βg‖ , (3.33)

where for g ∈ G, βg ∈ R|g| is the subvector of β composed of coordinates in g. the group
Lasso can be solved via proximal gradient descent and by block coordinate descent
(BCD), the latter being amenable to Anderson acceleration. As Figure 3.11 shows, the
superiority of Anderson accelerated block coordinate descent is on par with the one
observed on the problems studied above.
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Figure 3.11 – Group Lasso, suboptimality. Suboptimality as a function of time for
the group Lasso on the Leukemia dataset, λ = λmax/100. Groups are artificially taken
as consecutive blocks of 5 features.

3.4 Conclusion

In this work, we have proposed to accelerate coordinate descent using Anderson extra-
polation. We have exploited the fixed point iterations followed by coordinate descent
iterates on multiple machine learning problems to improve their convergence speed.
We have circumvented the non-symmetricity of the iteration matrices by proposing a
pseudo-symmetric version for which accelerated convergence rates have been derived.
In practice, we have performed an extensive validation to demonstrate large benefits on
multiple datasets and problems of interests. For future works, the excellent performance
of Anderson extrapolation for cyclic coordinate descent calls for a more refined analysis
of the known bounds, through a better analysis of the spectrum and numerical range
of the iteration matrices.
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In Chapter 3 we saw how to efficiently solve “smooth + nonsmooth separable” op-
timization problems. In this chapter we are interested in selecting the regularization
parameter of Lasso-type problems, trading the data-fidelity term against the sparsity
enforcing term. In high dimensional sparse regression, there exist estimators for which
the optimal regularization parameter has a closed-form formula and is independent
from the true noise level: pivotal estimators. The canonical pivotal estimator is the
square-root Lasso, formulated along with its derivatives as a “nonsmooth + nonsmooth”
optimization problem. Modern techniques to solve these include smoothing the data
fitting term, to benefit from fast efficient proximal algorithms. In this chapter we show
minimax sup-norm convergence rates for non smoothed and smoothed, single task and
multitask square-root Lasso-type estimators. Thanks to our theoretical analysis, we
provide some guidelines on how to set the smoothing hyperparameter, and illustrate on
synthetic data the interest of such guidelines.
This chapter is based on the following work, accepted at AISTATS 2020:

• M. Massias, Q. Bertrand, A. Gramfort, and J. Salmon. Support recovery and
sup-norm convergence rates for sparse pivotal estimation. In AISTATS, 2020a
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4.1 Introduction

Since the mid 1990’s and the development on the Lasso (Tibshirani, 1996), a vast
literature has been devoted to sparse regularization for high dimensional regression.
Statistical analysis of the Lasso showed that it achieves optimal rates (up to log factor,
Bickel et al. 2009); see also Bühlmann and van de Geer (2011) for an extensive review.
Yet, this estimator requires a specific calibration to achieve such an appealing rate:
the regularization parameter must be proportional to the noise level. This quantity is
generally unknown to the practitioner, hence the development of methods which are
adaptive with respect to the noise level. An interesting candidate with such a property
is the square-root Lasso (

√
Lasso, Belloni et al. 2011) defined for an observation vector

y ∈ Rn, a design matrix X ∈ Rn×p and a regularization parameter λ by

arg min
β∈Rp

1√
n
‖y −Xβ‖2 + λ‖β‖1 . (4.1)

It has been shown to be pivotal with respect to the noise level by Belloni et al. (2011):
the optimal regularization parameter of their analysis does not depend on the true noise
level. This feature is also encountered in practice as illustrated by Figure 4.1 (see details
on the framework in Section 4.4.1).

Figure 4.1 – Lasso (left) and square-root Lasso (right) optimal regularization parameters
λ determined by cross validation on prediction error (blue), as a function of the noise
level on simulated values of y. As indicated by theory, the Lasso’s optimal λ grows
linearly with the noise level, while it remains constant for the square-root Lasso.

Despite this theoretical benefit, solving the square-root Lasso requires tackling a
“nonsmooth + nonsmooth” optimization problem. To do so, one can resort to conic
programming (Belloni et al., 2011) or primal-dual algorithms (Chambolle and Pock,
2011) for which practical convergence may rely on hard-to-tune hyperparameters. An-
other approach is to use variational formulations of norms, e.g., expressing the absolute
value as |x| = minσ>0

x2

2σ + σ
2 (Bach et al. 2012, Sec. 5.1, Micchelli et al. 2010). This

leads to concomitant estimation (Huber and Dutter, 1974), that is, optimization prob-
lems over the regression parameters and an additional variable. In sparse regression,
the seminal concomitant approach is the concomitant Lasso (Owen, 2007):

arg min
β∈Rp,σ>0

1

2nσ
‖y −Xβ‖22 +

σ

2
+ λ

∥∥β∥∥
1
, (4.2)

which yields the same estimate β̂ as Problem (4.1) whenever y−Xβ̂ 6= 0. Problem (4.2)
is more amenable: it is jointly convex, and the data fitting term is differentiable. Nev-
ertheless, the data fitting term is still not smooth, as σ can approach 0 arbitrarily:
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proximal solvers cannot be applied safely. A solution is to introduce a constraint σ ≥ σ
(Ndiaye et al., 2017), which amounts to smoothing (Nesterov, 2005; Beck and Teboulle,
2012) the square-root Lasso, i.e., replacing its nonsmooth data fit by a smooth approx-
imation (see details in Section 4.1.4).

There exist a straightforward way to generalize the square-root Lasso to the multitask
setting (observations Y ∈ Rn×T ): the multitask square-root Lasso,

arg min
B∈Rp×T

1√
nT

∥∥Y −XB
∥∥
F

+ λ
∥∥B
∥∥

2,1
, (4.3)

where ‖B‖2,1 is the `1 norm of the `2 norms of the rows. Another extension of the
square-root Lasso to the multitask case is the multivariate square-root Lasso1 (van de
Geer, 2016, Sec. 3.8):

arg min
B∈Rp×T

1√
nT (n ∧ T )

∥∥Y −XB
∥∥
∗ + λ

∥∥B
∥∥

2,1
. (4.4)

It is also shown by van de Geer (2016) that when Y −XB̂ is full rank, Problem (4.4)
also admits a concomitant formulation, this time with an additional matrix variable:

arg min
B∈Rp×T
S�0

1

2nT
‖Y −XB‖2S−1 +

1

2n
Tr(S) + λ

∥∥B
∥∥

2,1
. (4.5)

In the analysis of the square-root Lasso (4.1), the non-differentiability at 0 can be
avoided by excluding the corner case where the residuals y − Xβ̂ vanish. However,
analysis of the multivariate square-root Lasso through its concomitant formulation (4.5)
has a clear weakness: it requires excluding rank deficient residuals cases, which is far
from being a corner case. As illustrated in Figure 4.2, the full rank assumption made by
van de Geer and Stucky (2016, Lemma 1) or Molstad (2019, Rem. 1) is not realistic, even
for T ≥ n and high values of λ (see Section 4.4 for the setting’s details). Motivated by
numerical applications, Massias et al. (2018a) introduced a lower bound on the smallest
eigenvalue of S (S � σ Idn) in Problem (4.5) to circumvent this issue. As we will see in
Chapter 5, this amounts to smoothing the nuclear norm.

Our goal is to prove sup-norm convergence rates and support recovery guarantees for
the estimators introduced above, and their smoothed counterparts.

Related works. The statistical properties of the Lasso have been studied under vari-
ous frameworks and assumptions. Bickel et al. (2009) showed that with high probability,
‖X(β̂ − β∗)‖2 vanishes at the minimax rate (prediction convergence), whereas Lounici
(2008) proved the sup-norm convergence and the support recovery of the Lasso (es-
timation convergence), i.e., controlled the quantity ‖β̂ − β∗‖∞. The latter result was
extended to the multitask case by Lounici et al. (2011).

Since then, other Lasso-type estimators have been proposed and studied, such as the
square-root Lasso (Belloni et al., 2011) or the scaled Lasso (Sun and Zhang, 2012). In
the multitask case, Liu et al. (2015) introduced the Calibrated Multivariate Regression,
and van de Geer and Stucky (2016); Molstad (2019) studied the multivariate square-root
Lasso. These estimators have been proved to converge in prediction. However, apart

1modified here with a row-sparse penalty instead of `1
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Figure 4.2 – Singular values of the residuals Y − XB̂ of the multivariate square-root
Lasso (n = 10, T = 20, p = 30), as a function of λ. The observation matrix Y is
full rank, but the residuals are rank deficient even for high values of the regularization
parameter, invalidating the classical assumptions needed for statistical analysis.

from Bunea et al. (2014) for a particular group square-root Lasso, we are not aware of
other works showing sup-norm convergence2 of these estimators.

Within the framework introduced by Lounici (2008), our contributions are the following:

• We prove sup-norm convergence and support recovery of the multitask square-root
Lasso and its smoothed version.

• We prove sup-norm convergence and support recovery of the multivariate square-
root Lasso (van de Geer and Stucky, 2016, Sec. 2.2), and a smoothed version of
it.

• Theoretical analysis leads to guidelines for the setting of the smoothing parameter
σ. In particular, as soon as σ ≤ σ∗/

√
2, the “optimal” λ and the sup-norm bounds

obtained do not depend on σ.

• We show on synthetic data the support recovery performance is little sensitive to
the smoothing parameter σ as long as σ ≤ σ∗/

√
2.

Our contributions with respect to the existing literature are summarized in Table 4.1.

Notation. For any B ∈ Rp×T we define S(B) , {j ∈ [p] : ||Bj:||2 6= 0} the row-
wise support of B. We write S∗ for the row-wise support of the true coefficient matrix
B∗ ∈ Rp×T . For any B ∈ Rp×T and any subset S of [p] we denote BS the matrix in
Rp×T which has the same values as B on the rows with indices in S and vanishes on
the complement Sc. The estimated regression coefficients are written B̂, their difference
with the true parameter B∗ is noted ∆ , B̂ − B∗. The residuals at the optimum are
noted Ê , Y −XB̂. For a < b, [x]ba , max(a,min(x, b)) is the clipping of x at levels a
and b.

Model. Consider the multitask linear regression model:

Y = XB∗ + E , (4.6)
2of particular interest: combined with a large coefficients assumption, it implies support identific-

ation
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where Y ∈ Rn×T , X ∈ Rn×p is the deterministic design matrix, B∗ ∈ Rp×T are the true
regression coefficients and E ∈ Rn×T models a centered noise.

For an estimator B̂ of B∗, we aim at controlling ‖B̂− B∗‖2,∞ with high probability,
and showing support recovery guarantees provided the non-zero coefficients are large
enough. To prove such results, the following assumptions are classical: Gaussianity and
independence of the noise, and mutual incoherence.

Assumption 4.1. The entries of E are i.i.d. N (0, σ∗2) random variables.

Assumption 4.2 (Mutual incoherence). The Gram matrix Ψ , 1
nX
>X satisfies

Ψjj = 1 , and max
j′ 6=j
|Ψjj′ | ≤ 1

7αs , ∀j ∈ [p] , (4.7)

for some integer s ≥ 1 and some constant α > 1.

Mutual incoherence of the design matrix (Assumption 4.2) implies the Restricted Ei-
genvalue Property introduced by Bickel et al. (2009).

Lemma 4.3 (Restricted Eigenvalue Property, Lounici 2008, Lemma 2). If Assump-
tion 4.2 is satisfied, then:

min
S⊂[p]
|S|≤s

min
∆ 6=0

‖∆Sc‖2,1
≤3‖∆S‖2,1

1√
n

∥∥X∆
∥∥
F∥∥∆S
∥∥
F

≥
√

1− 1
α > 0 . (4.8)

In particular, with the choice ∆ , B̂−B∗, if
∥∥∥∆Sc∗

∥∥∥
2,1
≤ 3‖∆S∗‖2,1, the following bound

holds:

1

n
‖X∆‖2F ≥

(
1− 1

α

)
‖∆S∗‖2F . (4.9)

4.1.1 Motivation and general proof structure

Structure of all proofs. We prove results of the following form for several estimators
B̂ (summarized in Table 4.1): for some parameter λ independent of the noise level σ∗,
with high probability,

1

T
‖B̂− B∗‖2,∞ ≤ C

1√
nT

√
log p

T
σ∗ . (4.10)

Then, assuming a signal strong enough such that

min
j∈S∗

1

T
‖B∗j:‖2 > 2C

1√
nT

√
log p

T
σ∗ , (4.11)

on the same event, for some η > 0,

Ŝ , {j ∈ [p] :
1

T
‖B̂j:‖2 > C(3 + η)λσ∗} (4.12)

matches the true sparsity pattern: Ŝ = S∗ .
We explain here the general sketch proofs for all the estimators. We assume that
Assumption 4.2 holds and then place ourselves on an event A such that ‖X>Z‖2,∞ ≤
λ/2 (for a Z ∈ ∂f(E), where f is the data fitting term) in order to use Lemma 4.5 (b),
which links the control of ‖Ψ(B̂− B∗)‖2,∞ to the control of ‖B̂− B∗‖2,∞. To obtain
sup-norm convergence it remains for each estimator to:
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Table 4.1 – Summary of estimators (MT: multitask, MV: multivariate)

Name f(E) Sup-norm cvg Pred. cvg

MT
√

Lasso (4.3) 1√
nT
‖E‖F Bunea et al. (2014) Bunea et al. (2014)

MT concomitant Lasso min
σ>0

1
2nTσ‖E‖2F + σ

2 us Li et al. (2016)

MT smooth. conco. Lasso (4.26) min
σ>σ

1
2nTσ‖E‖2F + σ

2 us Li et al. (2016)

MV
√

Lasso (4.4) 1
n‖E/

√
T‖∗ us Molstad (2019)

MV conco.
√

Lasso (4.5) min
S�0

1
2nT ‖E‖2S−1 + 1

2n Tr(S) us Molstad (2019)

MV SGCL (4.45) min
σ̄�S�σ

1
2nT ‖E‖2S−1 + 1

2n Tr(S) us

• control the probability of the event A with classical concentration inequalities.

• control the quantity ‖Ψ(B̂− B∗)‖2,∞, with:

– first order optimality conditions, which provide a bound on ‖X>Z‖2,∞:
‖X>Ẑ‖2,∞ ≤ λ for a Ẑ ∈ ∂f(Ê),

– the definition of the event A,
– for some estimators, an additional assumption (Assumption 4.8).

Next, we detail the lemmas used in this strategy.

4.1.2 Preliminary lemma

First we show that if Assumption 4.2 holds, then a bound “in prediction”, on ‖Ψ∆‖2,∞,
leads to a bound “in estimation”, on ‖∆‖2,∞.

Lemma 4.4. Let Ψ, α and s satisfy Assumption 4.2, let B̂ be an estimator satisfying:
‖∆Sc∗‖2,1 ≤ 3‖∆S∗‖2,1, then:

a) ‖∆S∗‖F ≤ α
α−14

√
s‖Ψ∆‖2,∞ ,

b) ‖∆‖2,1 ≤ α
α−116s‖Ψ∆‖2,∞ ,

c) ‖∆‖2,∞ ≤
(

1 + 16
7(α−1)

)
‖Ψ∆‖2,∞ .

Proof For Lemma 4.4 (a), the idea is to upper and lower bound 1
n‖X∆‖2F . First we

bound ‖∆‖2,1:

‖∆‖2,1 = ‖∆Sc∗‖2,1 + ‖∆S∗‖2,1
≤ 4‖∆S∗‖2,1
≤ 4
√
s‖∆S∗‖F . (4.13)

Now we can upper bound 1
n‖X∆‖2F with Hölder inequality and Equation (4.13):

1
n‖X∆‖2F = 〈∆,Ψ∆〉

≤ ‖∆‖2,1‖Ψ∆‖2,∞
≤ 4
√
s‖∆S∗‖F ‖Ψ∆‖2,∞ . (4.14)
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By Equation (4.9) and Equation (4.14):

(1− 1
α)‖∆S∗‖2F ≤ 1

n‖X∆‖2F
≤ 4
√
s‖∆S∗‖F ‖Ψ∆‖2,∞

‖∆S∗‖F ≤
α

α− 1
4
√
s‖Ψ∆‖2,∞ . (4.15)

Lemma 4.4 (b) is a direct consequence of Equation (4.13) and lemma 4.4 (a):

‖∆‖2,1 ≤ 4
√
s‖∆S∗‖F

≤ α

α− 1
16s‖Ψ∆‖2,∞ . (4.16)

Finally, for Lemma 4.4 (c), for any j ∈ [p],(
Ψ∆

)
j:

= ∆j: +
∑

j′ 6=jΨj′j∆j′:

||
(
Ψ∆

)
j:
−∆j:||2 ≤

∑
j′ 6=j |Ψjj′ | × ||∆j′:||2

||
(
Ψ∆

)
j:
−∆j:||2 ≤

1

7αs

∑
j′ 6=j‖∆j′:‖

‖∆‖2,∞ ≤‖Ψ∆‖2,∞ + 1
7αs‖∆‖2,1

≤
(

1 + 16
7(α−1)

)
‖Ψ∆‖2,∞ . (4.17)

using Assumption 4.2 and lemma 4.4 (b).

We now provide conditions leading to ‖∆Sc∗‖2,1 ≤ 3‖∆S∗‖2,1, to be able to apply
Lemma 4.3. In this section we consider estimators of the form

B̂ , arg min
B∈Rp×T

f(Y −XB) + λ‖B‖2,1 , (4.18)

for a proper, lower semi-continuous and convex function f : Rn×T → R (see the sum-
mary in Table 4.1). Fermat’s rule for Problem (4.18) reads:

0 ∈ X>∂f(Ê) + λ∂‖·‖2,1(B̂) , (4.19)

Hence, we can find Ẑ ∈ ∂f(Ê) such that

‖X>Ẑ‖2,∞ ≤ λ . (4.20)

Lemma 4.5. Consider an estimator based on Problem (4.18), and assume that there
exists Z ∈ ∂f(E) such that ‖X>Z‖2,∞ ≤ λ/2. Then:

a) ‖∆Sc∗‖2,1 ≤ 3‖∆S∗‖2,1 ,

b) if Ψ and α satisfy Assumption 4.2,

‖∆‖2,∞ ≤
(

1 +
16

7(α− 1)

)
‖Ψ∆‖2,∞ .

Proof For Lemma 4.5 (a), we use the minimality of B̂:

f(Ê)− f(E) ≤ λ‖B∗‖2,1 − λ‖B̂‖2,1 . (4.21)
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We upper bound the right hand side of Equation (4.21), using ‖B̂‖2,1 = ‖B̂S∗‖2,1 +
‖B̂Sc∗‖2,1, B∗Sc∗ = 0 and with the triangle inequality:

‖B∗‖2,1 − ‖B̂‖2,1 = ‖B∗S∗‖2,1 − ‖B̂S∗‖2,1 − ‖B̂Sc∗‖2,1
= ‖B∗S∗‖2,1 − ‖B̂S∗‖2,1 − ‖∆Sc∗‖2,1
≤ ‖(B∗ − B̂)S∗‖2,1 − ‖∆Sc∗‖2,1
≤ ‖∆S∗‖2,1 − ‖∆Sc∗‖2,1 . (4.22)

We now aim at finding a lower bound of the left hand side of Equation (4.21). By
convexity of f , ∂f(E) 6= ∅. Picking Z ∈ ∂f(E) such that ‖X>Z‖2,∞ ≤ λ

2 yields:

f(Y −XB̂)− f(Y−XB∗) ≥ −
〈
Z,X(B̂− B∗)

〉
≥ −

〈
X>Z,∆

〉
≥ −‖X>Z‖2,∞‖∆‖2,1
≥ −1

2
λ‖∆‖2,1 .

Combining Equations (4.21) to (4.23) leads to:

−1

2
‖∆‖2,1 ≤ ‖∆S∗‖2,1 − ‖∆Sc∗‖2,1
‖∆Sc∗‖2,1 ≤ 3‖∆S∗‖2,1 . (4.23)

Proof of Lemma 4.5 (b) is a direct application of Lemmas 4.5 (a) and 4.4 (c).

Equipped with these Assumptions and Lemmas, we will show that the considered es-
timators reach the minimimax lower bounds, which we recall in the following.

4.1.3 Minimax lower bounds

As said in Section 4.1.1, our goal is to provide convergence rates on the quantity
‖B̂− B∗‖2,∞. To show that our bounds are “optimal” we recall that the considered
estimators achieve minimax rate (up to a logarithmic factor). Indeed, under some ad-
ditional assumptions controlling the conditioning of the design matrix, one can show
(Lounici et al., 2011) minimax lower bounds.

Assumption 4.6. For all ∆ ∈ Rp×T \{0} such that |S(∆)| ≤ 2|S∗|:

κ ≤ ‖X∆‖2F
n‖∆‖2F

≤ κ̄ . (4.24)

Provided Assumptions 4.1 and 4.6 hold true, Lounici et al. (2011, Thm. 6.1) proved
the following minimax lower bound (with an absolute constant R):

inf
B̂

sup
B∗s.t.
|S(B∗)|≤s

E
(

1

T
‖B̂− B∗‖2,∞

)
≥ Rσ∗

κ̄
√
n

√
1 + log(ep/s)

T .
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4.1.4 Smoothing

Some of the pivotal estimators studied here are obtained via a technique called smooth-
ing. For L > 0, a convex function φ is L-smooth (i.e., its gradient is L-Lipschitz) if and
only if its Fenchel conjugate φ∗ is 1

L -strongly convex (Hiriart-Urruty and Lemaréchal,
1993, Thm 4.2.1). Therefore, given a smooth function ω, a principled way to smooth
a function f is to add the strongly convex ω∗ to f∗, thus creating a strongly convex
function, whose Fenchel transform is a smooth approximation of f . Formally, given a
smooth convex function ω, the ω-smoothing of f is (f∗ + ω∗)∗. By properties of the
Fenchel transform, the latter is also equal to f �ω whenever f is convex (Bauschke and
Combettes, 2011, Prop. 13.21).

Proposition 4.7. Let ωσ = 1
2σ‖·‖2F + σ

2 . The ωσ-smoothing of the Frobenius norm is
equal to:

(
ωσ �‖·‖F

)
(Z) =

‖Z‖F , if ‖Z‖F ≤ σ ,
1

2σ‖Z‖2F + σ
2 , if ‖Z‖F ≥ σ .

= min
σ≥σ

1

2σ
‖Z‖2F +

σ

2
. (4.25)

4.2 Multitask square-root Lasso

It is clear that the multitask square-root Lasso (Problem (4.3)) suffers from the same
numerical weaknesses as the square-root Lasso. A more amenable version is introduced
in Chapter 5. The smoothed multitask square-root Lasso is obtained by replacing the
nonsmooth function ‖·‖F with a smooth approximation, depending on a parameter
σ > 0:

arg min
B∈Rp×T

(
‖·‖F �

(
1

2σ‖·‖2 + σ
2

))(
Y−XB√

nT

)
+ λ

∥∥B
∥∥

2,1
. (4.26)

Plugging the expression of the smoothed Frobenius norm (4.25), the problem formula-
tion becomes:

(B̂, σ̂) ∈ arg min
B∈Rp×T
σ≥σ

1

2nTσ
‖Y −XB‖2F +

σ

2
+ λ

∥∥B
∥∥

2,1
, (4.27)

where the data fitting term is (nTσ)−1-smooth with respect to B. We show that estim-
ators (4.3) and (4.26) reach the minimax lower bound, with a regularization parameter
independent of σ∗. For that, another assumption is needed.

Assumption 4.8 (van de Geer 2016, Lemma 3.1). There exists η > 0 verifying

λ‖B∗‖2,1 ≤ ησ∗ . (4.28)

Proposition 4.9. Let B̂ denote the multitask square-root Lasso (4.3) or its smoothed
version (4.26). Let Assumption 4.1 be satisfied, let α and η satisfy Assumptions 4.2
and 4.8. For C =

(
1 + 16

7(α−1)

)
, A >

√
2 and λ = 2

√
2√

nT

(
1 + A

√
(log p)/T

)
, if σ ≤ σ∗√

2

then with probability at least 1− p1−A2/2 − (1 + e2)e−nT/24,

1

T
‖B̂− B∗‖2,∞ ≤ C(3 + η)λσ∗ . (4.29)
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Moreover provided that

min
j∈S∗

1

T
‖B∗j:‖2 > 2C(3 + η)λσ∗ , (4.30)

then, with the same probability, the estimated support

Ŝ , {j ∈ [p] :
1

T
‖B̂j:‖2 > C(3 + η)λσ∗} (4.31)

recovers the true sparsity pattern: Ŝ = S∗.

Proof We first bound ‖Ψ∆‖2,∞. Let A1 be the event

A1 ,

{
‖X>E‖2,∞√
nT‖E‖F

≤ λ
2

}
∩
{
σ∗√

2
< ‖E‖F√

nT
< 2σ∗

}
. (4.32)

By Lemma 4.16 (h), P(A1) ≥ 1 − p1−A2/2 − (1 + e2)e−nT/24. For both estimators, on
A1 we have:

n‖Ψ∆‖2,∞ = ‖X>(Ê− E)‖2,∞
≤ ‖X>Ê‖2,∞ + ‖X>E‖2,∞
≤ ‖X>Ê‖2,∞ + λnTσ∗ , (4.33)

hence we need to bound ‖X>Ê‖2,∞. We do so using optimality conditions, that yield
for Problem (4.3), with Ê 6= 0,

‖X> Ê
‖Ê‖F

‖2,∞ ≤ λ
√
nT

1
nT ‖X>Ê‖2,∞ ≤ λ‖Ê‖F√

nT
, (4.34)

and the last equation is still valid if Ê = 0. For Problem (4.26), the optimality conditions
yield:  1

nT ‖X>Ê‖2,∞ ≤ λ‖Ê‖F√
nT

, if ‖Ê‖F√
nT
≥ σ ,

1
nT ‖X>Ê‖2,∞ ≤ λσ , otherwise .

(4.35)

Therefore,
1
nT ‖X>Ê‖2,∞ ≤ λmax

(
‖Ê‖F√
nT
, σ

)
. (4.36)

It now remains to bound ‖Ê‖F for both estimators, which is done with Assumption 4.8:
for Problem (4.3), by minimality of the estimator,

1√
nT
‖Ê‖F + λ‖B̂‖2,1 ≤ 1√

nT
‖E‖F + λ‖B∗‖2,1

1√
nT
‖Ê‖F ≤ 1√

nT
‖E‖F + λ‖B∗‖2,1

≤ 2σ∗ + (1 + η)σ∗

≤ (3 + η)σ∗ , (4.37)

and we can obtain the same bound in the case of Problem (4.26): by the minimality of
the estimator we have on A1:(
‖·‖F �

(
1

2σ + σ
2

)
‖·‖2F

)
( Ê√

nT
) + λ‖B̂‖2,1 ≤

(
‖·‖F �

(
1

2σ‖·‖2F + σ
2 )

)
( E√

nT
) + λ‖B∗‖2,1
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1√
nT
‖Ê‖F + λ‖B̂‖2,1 ≤

(
‖·‖F �

(
1

2σ‖·‖2F + σ
2 )( E√

nT
)

)
+ λ‖B∗‖2,1

since ‖·‖F ≤
(
‖·‖F �

(
1

2σ‖·‖2F + σ
2

))
1√
nT
‖Ê‖F ≤ 1√

nT
‖E‖F + λ‖B∗‖2,1 since 1√

nT
‖E‖F ≥

σ∗√
2
≥ σ

≤ 2σ∗ + λ‖B∗‖2,1 since 1√
nT
‖E‖F ≤ 2σ∗

≤ 2σ∗ + (1 + η)σ∗ since λ‖B∗‖2,1 ≤ (1 + η)σ∗

1√
nT
‖Ê‖F ≤ (3 + η)σ∗ .

Combining Equations (4.33), (4.34), (4.36) and (4.37) we have in both cases:

1

T
‖Ψ∆‖2,∞ ≤ (3 + η)λσ∗ . (4.38)

Finally we exhibit an element of ∂f(E) to apply Lemma 4.5 (b). Recall that f =
1√
nT
‖·‖F for Problem (4.3), and f = ‖·‖F �

(
1

2σ‖·‖2F + σ
2

)
( ·√

nT
) for Problem (4.26).

On A1, ∂f(E) is a singleton for both estimators, whose element is E/(‖E‖F
√
nT ).

Additionally, on A1 the inequality 1√
nT

‖X>E‖2,∞
‖E‖F ≤ λ

2 holds, meaning we can apply

Lemma 4.5 (b) with Z = E/(‖E‖F
√
nT ). This proves the bound on ‖∆‖2,∞. Then,

the support recovery property easily follows from Lounici et al. (2009, Cor. 4.1).

Single task case. For the purpose of generality, we proved convergence results for
the multitask versions of the square-root/concomitant Lasso and its smoothed version,
but the results are also interesting in the single task setting: in this case (T = 1) it is
possible to achieve tighter convergence rates.

Proposition 4.10. Let Assumption 4.1 be satisfied, let α satisfy Assumption 4.2 and

let η satisfy Assumption 4.8. Let C = 2

(
1 + 16

7(α−1)

)
and

λ = A
√

2 log p/n . (4.39)

Then with probability at least 1− p1−A2/8 − (1 + e2)e−n/24,

1

T
‖β̂ − β∗‖2,∞ ≤ C(2 + η)λσ . (4.40)

Moreover if
min
j∈S∗
|β∗j | > 2C(2 + η)λσ , (4.41)

then with the same probability:

Ŝ = {j ∈ [p] : |β̂j | > C(2 + η)λσ} (4.42)

estimate correctly the true sparsity pattern:

Ŝ = S∗ . (4.43)
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Proof All the inequalities leading to Equation (4.38) still hold. The control of the

event A1 can be tighter in the single-task case. Since A1 =

{
1
n‖X>ε‖∞ ≤ λ

2
σ∗√

2

}
∩{

σ∗√
2
< ‖ε‖F√

nT
< 2σ∗

}
, with λ = A

√
2 log p/n, concentration in equalities from Lem-

mas 4.16 (b) and 4.16 (e) in Section 4.A leads to:

P(A1) ≥ 1− p1−A2/8 − (1 + e2)e−n/24 . (4.44)

4.3 Multivariate square-root Lasso

Here we show that the multivariate square-root Lasso3 and its smoothed version also
reach the minimax rate. Recall that the multivariate square-root Lasso is Problem (4.4).
For the numerical reasons mentioned above, as well as to get rid of the invertibility
assumption of Ê>Ê, we consider the smoothed estimator of Massias et al. (2018a):

arg min
B∈Rp×T

σ̄ Idn�S�σ Idn

1

2nT
‖Y −XB‖2S−1 +

TrS

2n
+ λ

∥∥B
∥∥

2,1
. (4.45)

The variable introduced by concomitant formulation is now a matrix S, correspond-
ing to the square root of the noise covariance estimate. The multivariate square-root
Lasso (4.4) and its concomitant formulation (4.5) have the same solution in B provided
Ê>Ê is invertible. In this case, the solution of Problem (4.5) in S is Ŝ = ( 1

T ÊÊ>)
1
2 .

Problem (4.45) is actually a small modification of Massias et al. (2018a), where we have
added the second constraint S � σ̄ Idn. σ̄ can for example be set as ‖( 1

T Y Y
>)1/2‖2,

as Figure 4.2 illustrates that this is the order of magnitude of ‖Ŝ‖2. Because of these
constraints, the solution in S is different from that of Problem (4.5). We write a
singular value decomposition of 1√

T
Ê: UDV >, with D = diag(γi) ∈ Rn×n, U ∈ Rn×n

and V ∈ RT×n such that U>U = V >V = Idn. Then the solution in S to Problem (4.45)
is Ŝ = U diag

(
[γi]

σ̄
σ

)
U> (this result can be derived from Massias et al. 2018a, Prop.

2). Ŝ can be used to bound ‖X>Ê‖2,∞:

Lemma 4.11. For the concomitant multivariate square-root Lasso (4.5) and the
smoothed concomitant multivariate square-root (4.45) we have:

‖X>Ê‖2,∞ ≤ ‖Ŝ‖2‖X>Ŝ−1Ê‖2,∞ . (4.46)

Proof

Concomitant multivariate square-root (Ŝ = (ÊÊ>)1/2). We recall that UDV >

is a singular value decomposition of 1√
T

Ê, with D = diag(γi) ∈ Rr×r, U ∈ Rn×r and
V ∈ RT×r such that U>U = V >V = Idr.

3we keep the name of van de Geer (2016), although a better name in our opinion would be the
(multitask) trace norm Lasso, but the name is used by Grave et al. (2011) when the nuclear norm is
used as a regularizer
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We have, observing that Ŝ−1Ê = (UD2U>)−1/2
√
TUDV > =

√
TUV >:

X>Ê =
√
TX>UDV > (4.47)

=
√
TX>UV >V DV > (4.48)

= X>Ŝ−1ÊV DV > . (4.49)

Therefore,

‖X>Ê‖2,∞ ≤ ‖V DV >‖2‖X>Ŝ−1Ê‖2,∞ (4.50)

≤ ‖Ŝ‖2‖X>Ŝ−1Ê‖2,∞ . (4.51)

Equation (4.46) also holds for Problem (4.45).

Smoothed concomitant multivariate square-root (Ŝ = U diag([γi]
σ̄
σ)U>). We

recall that UDV > is a singular value decomposition of 1√
T

Ê, with D = diag(γi) ∈ Rn×n,
U ∈ Rn×n and V ∈ RT×n such that U>U = V >V = Idn.

Observing that

Ŝ−1Ê = U diag([γi]
σ̄
σ)−1U>

√
TUDV > =

√
TU diag([γi]

σ̄
σ)−1 diag(γi)V

> , (4.52)

we have

X>Ê =
√
TX>U diag(γi)V

>

=
√
TX>U diag([γi]

σ̄
σ)−1 diag(γi) diag([γi]

σ̄
σ)V >

=
√
TX>U diag([γi]

σ̄
σ)−1 diag(γi)V

TV diag([γi]
σ̄
σ)V >

=
√
TX>Ŝ−1ÊV diag([γi]

σ̄
σ)V > .

Therefore,

‖X>Ê‖2,∞ ≤ ‖X>Ŝ−1Ê‖2,∞‖V diag([γi]
σ̄
σ)V >‖2 (4.53)

≤ ‖X>Ŝ−1Ê‖2,∞‖Ŝ‖2 . (4.54)

We can prove the minimax sup-norm convergence of these two estimators, using the
following assumptions.

Assumption 4.12. For the multivariate square-root Lasso, Ê>Ê is invertible, and there
exists η such that ‖( 1

T Ê>Ê)
1
2 ‖2 ≤ (2 + η)σ∗.

We get rid of this very strong hypothesis for the smoothed version, as the estimated
noise covariance is invertible because of the constraint S � σ Idn, and we can control
its operator norm via the constraint S � σ̄ Idn. We still need an assumption on σ and
σ̄.

Assumption 4.13. σ, σ̄ and η verify: σ ≤ σ∗√
2
and σ̄ = (2 + η)σ∗ with η ≥ 1.

Proposition 4.14. For the multivariate square-root Lasso (4.4) (resp. its smoothed
version (4.45)), let Assumption 4.1 be satisfied, let α satisfy Assumption 4.2 and let
η satisfy Assumption 4.12 (resp. let σ, σ̄, η satisfy Assumption 4.13). Let C =

(
1 +
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16
7(α−1)

)
, A ≥

√
2, and λ = 2

√
2√

nT
(1 + A

√
(log p)/T ). Then there exists c ≥ 1/64 such

that with probability at least 1− p1−A2/2 − 2ne−cT/n,

1

T
‖B̂− B∗‖2,∞ ≤ C(3 + η)λσ∗ . (4.55)

Moreover if

min
j∈S∗

1

T
‖B∗j:‖2 > 2C(3 + η)λσ∗ , (4.56)

then with the same probability:

Ŝ , {j ∈ [p] :
1

T
‖B̂j:‖2 > C(3 + η)λσ∗} (4.57)

correctly estimates the true sparsity pattern: Ŝ = S∗.

Proof Let A2 be the event:{
‖X>E‖2,∞

nT ≤ λσ∗

2
√

2

}
∩ {2σ∗ IdT � (E>E

n )
1
2 � σ∗√

2
IdT } . (4.58)

By Lemma 4.16 (i), P(A2) ≥ 1−p1−A2/2−2ne−cT/n (c ≤ 1/64). When the multivariate
square-root Lasso residuals are full rank, the optimality conditions for Problems (4.4)
and (4.45) read the same, but with differents Ŝ (introduced above):

‖X>Ŝ−1Ê‖2,∞ ≤ λTn . (4.59)

With Lemma 4.11 and eq. (4.59) and Assumption 4.12 for the multivariate square-root
Lasso (or Assumption 4.13 for its smoothed version):

n‖Ψ∆‖2,∞ = ‖X>(E− Ê)‖2,∞
≤ ‖X>Ê‖2,∞ + ‖X>E‖2,∞
≤ λTn‖Ŝ‖2 + ‖X>E‖2,∞
≤ λ(2 + η)Tnσ∗ + ‖X>E‖2,∞ . (4.60)

Then on the event A2:

1

T
‖Ψ∆‖2,∞ ≤ λ(2 + η)σ∗ + 1

nT ‖X>E‖2,∞
≤
(
3 + η

)
λσ∗ . (4.61)

Finally we exhibit an element of ∂f(E) to apply Lemma 4.5 (b). Recall that f =
1

n
√
T
‖·‖∗ for Problem (4.5), and f = min

σ̄ Idn�S�σ Idn

1
2nT ‖·‖2S−1 + TrS

2n for Problem (4.45).

We also recall that for a full rank matrix A ∈ Rn×T (Koltchinskii et al., 2011, Sec. 2):

∂‖A‖∗ = {(AA>)−1/2A} . (4.62)

On A2, ∂f(E) is a singleton for both estimators, whose element is (EE>)−1/2E/(n
√
T ).

Additionally on A2:

1
n
√
T
‖X>(EE>)−1/2E‖2,∞ ≤ 1

nT ‖X>E‖2,∞‖(EE>

T )−1/2‖2

≤ λσ∗

2
√

2
×
√

2

σ∗
≤ λ

2
, (4.63)
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meaning we can apply Lemma 4.5 (b) with Z = E(E>E)−1/2/n
√
T . This proves the

bound on ‖∆‖2,∞. Then, the support recovery property easily follows from Lounici
et al. (2009, Cor. 4.1).

4.4 Experiments

We first describe the setting of Figures 4.1 and 4.2. Then we show that empirically that
results given by Propositions 4.9 and 4.14 hold in practice. The signal-to-noise ratio
(SNR) is defined as ‖XB∗‖F

‖Y−XB‖F .

4.4.1 Pivotality of the square-root Lasso

In this experiment the matrix X consists of the 10 000 first columns of the climate
dataset (n = 864). We generate β∗ with 20 non-zero entries. Random Gaussian noise
is added to Xβ∗ to create y, with a noise variance σ∗ controlling the SNR.

For each SNR value, both for the Lasso and the square-root Lasso, we compute the
optimal λ on a grid between λmax (the estimator specific smallest regularization level
yielding a 0 solution), using cross validation on prediction error on left out data. For
each SNR, results are averaged over 10 realizations of y.

Figure 4.1 shows that, in accordance with theory, the optimal λ for the Lasso depends
linearly on the noise level, while the square-root Lasso achieves pivotality.

4.4.2 Rank deficiency experiment

For (n, T, p) = (10, 20, 30), we simulate data: entries of X are i.i.d. N (0, 1), B∗ has
5 non zeros rows, and Gaussian noise is to XB∗ added to result in a SNR of 1. We
reformulate Problem (4.4) as a Conic Program, and solve it with the SCS solver of cvxpy
(O’Donoghue et al., 2016; Diamond and Boyd, 2016) for various values of λ (λmax is
the smallest regularization value yielding a null solution). We then plot the singulars
values of the residuals at optimum, shown on Figure 4.2.

Since the problem is reformulated as a Conic Program and solved approximately (preci-
sion ε = 10−6), the residuals are not exact; however the sudden drop of singular values
of Y −XB̂ must be interpreted as the singular value being exactly 0. One can see that
even for very high values of λ, the residuals are rank deficient while the matrix Y is
not. This is most likely due to the trace penalty on S in the equivalent formulation of
Problem (4.5), encouraging singular values to be 0. Therefore, even on simple toy data,
the hypothesis used by van de Geer and Stucky (2016); Molstad (2019) does not hold,
justifying the need for smoothing approaches, both from practical and theoretical point
of views.

4.4.3 (Multitask) smoothed concomitant Lasso

Here we illustrate, as indicated by theory, that when the smoothing parameter σ is
sufficiently small, the multitask SCL is able to recover the true support (Proposi-
tion 4.9). More precisely, when σ ≤ σ∗/

√
2, there exist a λ, independent of σ and

σ∗, such that the multitask SCL recovers the true support with high probability. We
use (n, T, p) = (50, 50, 1000). The design X is random with Toeplitz-correlated features
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Figure 4.3 – (Synthetic data, n = 50, p = 1000, T = 20) Hard recovery loss for different
values of SNR for the multitask SCL.
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Figure 4.4 – (Synthetic data, n = 50, p = 1000, T = 20) Hard recovery loss (top) and
percent of non-zeros coefficients (bottom) for different values of SNR: SNR = 1 (left),
SNR = 2 (right) for the multitask SCL.

with parameter ρX = 0.5 (correlation between X:i and X:j is ρ|i−j|X ), and its columns
have unit Euclidean norm. The true coefficient B∗ has 5 non-zeros rows whose entries
are i.i.d. N (0, 1).

Comments on Figures 4.3 and 4.4 The multitask SCL relies on two hyperpara-
meters: the penalization coefficient λ and the smoothing parameter σ, whose influence
we study here. The goal is to show empirically that when σ ≤ σ∗/

√
2 the optimal λ

does not depend on the smoothing parameter σ. We vary λ and σ on a grid: for each
pair (λ, σ) we solve the multitask SCL. For each solution B̂(λ,σ) we then compute a met-
ric, the hard recovery (Figure 4.3) or the size of the support (Figure 4.4). The metrics
are averaged over 100 realizations of the noise. Figure 4.3 shows the latter graph for
different values of SNR. We can see that when σ ≤ σ∗, support recovery is achieved
for λ independent of σ. As soon as σ > σ∗ the optimal λ depends on σ. When σ
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Figure 4.5 – (Synthetic data, n = 150, p = 500, T = 100) Hard recovery loss for different
values of SNR for the SGCL.

reaches a large enough value (i.e., σ∗) then the recovery profile is modified: the optimal
λ decreases as σ grows. This is logical, since as soon as the constraint is saturated, the
(multitask) SCL boils down to a multitask Lasso with regularization parameter λσ:

B̂ , arg min
B∈Rp×T

1

2nT

∥∥Y −XB
∥∥2

F
+ λσ

∥∥B
∥∥

2,1
. (4.64)

Figure 4.4 shows that with a fixed λ higher values of σ may lead to smaller support
size, see e.g., λ/λ0 = 0.32.

4.4.4 Smoothed generalized concomitant Lasso (SGCL)

The experimental setting is the same as before, except here we used (n, T, p) =
(150, 100, 500). Figure 4.5 illustrates Proposition 4.14. When σ ≤ σ∗, there exist a
λ that does not depend on σ and such that SGCL finds the true support S∗. However,
as before, when σ ≥

√
2σ∗, λ depends on σ.

4.5 Conclusion

We have proved sup norm convergence rates and support recovery for a family of sparse
estimators derived from the square-root Lasso. We showed that they are pivotal too:
the optimal regularization parameter does not depend on the noise level. We showed
that their smoothed versions retain these properties while being simpler to solve, and
requiring more realistic assumptions to be analyzed. These findings were corroborated
numerically, in particular for the influence of the smoothing parameter.





Appendix

4.A Concentration inequalities

The following theorem is a powerful tool to show a lot of concentration inequalities:

Theorem 4.15 (Giraud 2014, Thm B.6 p. 221). Assume that F : Rd → R is 1-Lipschitz
and z has N (0, σ2 Idd) as a distribution, then there exists a variable ξ, exponentially
distributed with parameter 1, such that:

F (z) ≤ E[F (z)] +
√

2ξ . (4.65)

Lemma 4.16. a) Let C1 ,
{

1
n‖X>ε‖∞ ≤ λ

2

}
. Take λ = Aσ∗

√
(log p)/n and A >

2
√

2, then:

P(C1) ≥ 1− 2p1−A
2

8 . (4.66)

b) Let C′1 ,
{

1
n‖X>ε‖∞ ≤ λ

2
σ∗√

2

}
. Take λ = A

√
(2 log p)/n and A > 2

√
2, then:

P(C1) ≥ 1− 2p1−A
2

8 . (4.67)

c) Let C2 ,
{

1
nT ‖X>E‖2,∞ ≤ λ

2

}
. Take λ = 2σ∗√

nT

(
1 +A

√
log p
T

)
and A >

√
2,

then:
P(C2) ≥ 1− p1−A2/2 . (4.68)

Another possible control is Lounici et al. (2009, Proof of Lemma 3.1, p. 6). Let
A > 8 and λ = 2σ∗√

nT

√
1 + A log p√

T
, then:

P(C2) ≥ 1− pmin(8 log p,A
√
T/8) . (4.69)

d) Let C3 ,

{
1
nT ‖X>E‖2,∞ ≤ λσ∗

2
√

2

}
. Take λ = 2

√
2√

nT

(
1 +A

√
log p
T

)
and A >

√
2,

then:
P(C3) ≥ 1− p1−A2/2 . (4.70)

e) Let C4 ,

{
σ∗√

2
< ‖ε‖F√

nT
< 2σ∗

}
. Then:

P(C4) ≥ 1− (1 + e2)e−nT/24 . (4.71)

f) Let C5 ,


(

EE>

T

) 1
2

� σ∗√
2

. Then with c ≥ 1
32 :

P(C5) ≥ 1− ne−cT/(2n) . (4.72)
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g) Let C6 ,

2σ∗ �
(

EE>

T

) 1
2

. Then with c ≥ 1
32 :

P(C6) ≥ 1− ne−cT/n . (4.73)

h) Let us recall that A1 =

{
‖X>E‖2,∞√
nT‖E‖F

≤ λ
2

}
∩
{
σ∗√

2
< ‖E‖F√

nT
< 2σ∗

}
, we have

P(A1) ≥ 1− p1−A2/2 − (1 + e2)e−nT/24 . (4.74)

i) Let us recall that A2 =

{
‖X>E‖2,∞

nT ≤ λσ∗

2
√

2

}
∩
{

2σ∗ IdT � (EE>

n )
1
2 � σ∗√

2
IdT

}
Proof Lemma 4.16 (a):

P
(
Cc1
)
≤ pP

(∣∣∣X>:1ε∣∣∣ ≥ nλ/2)
≤ pP

(∣∣ε1

∣∣ ≥ √nλ/2) (
∥∥X:1

∥∥ =
√
n)

≤ pP
(∣∣ε1

∣∣ /σ ≥ √nλ/(2σ)
)

≤ 2p exp

(
−nλ

2

8σ2

)
(Theorem 4.15)

≤ 2p1−A
2

8 (λ = Aσ
√

(log p)/n) . (4.75)

Lemma 4.16 (b) is a direct consequence of Lemma 4.16 (a).

Lemma 4.16 (c): since E is isotropic, the law of u>E is the same for all vectors u ∈ Rn
of same norm. In particular, X>:1 E and

√
ne>1 E =

√
nE1: have the same law.

The variable 1
σ‖E1:‖2 is a chi variable with T degrees of freedom, and

1

σ
E[‖E1:‖2] =

√
2Γ(T+1

2 )

Γ(T2 )
∈
[

T√
T + 1

,
√
T

]
, (4.76)

where the bound can be proved by recursion. We have:

P
(
Cc2
)
≤ pP

(
‖X>:1 E‖2 ≥ Tnλ/2

)
≤ pP

(
‖E1:‖2 ≥ T

√
nλ/2

)
(by isotropy of E)

≤ pP
(
‖E1:‖2 ≥ σ

√
T +Aσ

√
log p

)
(λ = 2σ

T
√
n

(
√
T +A

√
log p))

≤ pP
(
‖E1:‖2 ≥ E(‖E1:‖2) +Aσ

√
log p

)
(σ
√
T ≥ E(‖E1:‖2)

≤ p1−A
2

2 (Theorem 4.15) . (4.77)

The proof of the other control of A2 can be found in Lounici et al. (2009, Proof of
Lemma 3.1, p. 6).

Lemma 4.16 (d) is a direct consequence of Lemma 4.16 (c).
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Proof of Lemma 4.16 (e) can be found in Giraud (2014, Proof of Lemma 5.4 p. 112),
who control the finer event { σ√

2
≤ ‖ε‖√

n
≤ (2− 1√

2
)σ}.

Proof of Lemmas 4.16 (f) and 4.16 (g) are particular cases of Gittens and Tropp (2011,
Cor. 7.2, p. 15).

Proof of Lemma 4.16 (h) is done using Lemmas 4.16 (d) and 4.16 (e). Indeed we

have A1 ⊃
{

1
nT ‖X>E‖2,∞ ≤ λσ∗

2
√

2

}
∩
{
σ∗√

2
< ‖E‖F√

nT
< 2σ∗

}
= C3 ∩ C4. Hence P(C1) ≥

1− P(Cc3)− P(Cc4) ≥ 1− p1−A2/2 − (1 + e2)e−nT/24.

Proof of Lemma 4.16 (i) is done using Lemmas 4.16 (d), 4.16 (f) and 4.16 (g). Indeed
A2 = C3∩C5∩C6. Hence P(A2) ≥ 1−P(Cc3)−P(Cc5)−P(Cc6) ≥ 1−p1−A2/2−2ne−cT/(2n).
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This chapters provide an application of the pivotal estimators presented in Chapter 4:
the multivariate square-root Lasso. In addition to have a regularization parameter
independent from the noise level, the (smoothed version of the) multivariate square-root
Lasso can cope with complex noise structure by using non-averaged measurements. The
resulting optimization problem consists in a smoothed trace norm as a data fit, and
an usual `2,1-norm as a penalty. It is jointly convex and amenable to efficient block
coordinate descent. Practical benefits are extensively demonstrated on real M/EEG
neuroimaging data, including visual and auditory cognitive experiments.
This chapter is based on the following work, accepted at NeurIPS 2019:

• Q. Bertrand, M. Massias, A. Gramfort, and J. Salmon. Handling correlated
and repeated measurements with the smoothed multivariate square-root Lasso.
In NeurIPS, 2019

5.1 Introduction

In many statistical applications, the number of parameters p is much larger than the
number of observations n. A popular approach to tackle linear regression problems
in such scenarios is to consider convex `1-type penalties, as popularized by Tibshirani
(1996). The use of these penalties relies on a regularization parameter λ trading data
fidelity versus sparsity. Unfortunately, Bickel et al. (2009) showed that, in the case of
white Gaussian noise, the optimal λ depends linearly on the standard deviation of the
noise – referred to as noise level. Because the latter is rarely known in practice, one
can jointly estimate the noise level and the regression coefficients, following pioneering
work on concomitant estimation (Huber and Dutter, 1974; Huber, 1981). Adaptations
to sparse regression (Owen, 2007) have been analyzed under the names of square-root
Lasso (Belloni et al., 2011) or scaled Lasso (Sun and Zhang, 2012). Generalizations
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have been proposed in the multitask setting, the canonical estimator being Multi-Task
Lasso (Obozinski et al., 2010).

The latter estimators take their roots in a white Gaussian noise model. However some
real-world data (such as magneto-electroencephalographic data) are contaminated with
strongly non-white Gaussian noise (Engemann and Gramfort, 2015). From a statistical
point of view, the non-uniform noise level case has been widely explored: Daye et al.
(2012); Wagener and Dette (2012); Kolar and Sharpnack (2012); Dalalyan et al. (2013).
In a more general case, with a correlated Gaussian noise model, estimators based on
non-convex optimization problems were proposed (Lee and Liu, 2012) and analyzed
for sub-Gaussian covariance matrices (Chen and Banerjee, 2017) through the lens of
penalized maximum likelihood estimation (MLE). Other estimators (Rothman et al.,
2010; Rai et al., 2012) assume that the inverse of the covariance (the precision matrix )
is sparse, but the underlying optimization problems remain non-convex. A convex
approach to regression with correlated noise, the Smooth Generalized Concomitant
Lasso (SGCL) was proposed by Massias et al. (2018a). Relying on smoothing techniques
(Moreau, 1965; Nesterov, 2005; Beck and Teboulle, 2012), the SGCL jointly estimates
the regression coefficients and the noise co-standard deviation matrix (the square root of
the noise covariance matrix). However, in applications such as M/EEG, the number of
parameters in the co-standard deviation matrix (≈ 104) is typically equal to the number
of observations, making it statistically hard to estimate accurately.

In this chapter we consider applications to M/EEG data in the context of neuroscience.
M/EEG data consists in recordings of the electric and magnetic fields at the surface or
close to the head. Here we tackle the source localization problem, which aims at estimat-
ing which regions of the brain are responsible for the observed electro-magnetic signals:
this problem can be cast as a multitask high dimensional linear regression (Ndiaye et al.,
2015). MEG and EEG data are obtained from heterogeneous types of sensors: magne-
tometers, gradiometers and electrodes, leading to samples contaminated with different
noise distributions, and thus non-white Gaussian noise. Moreover the additive noise
in M/EEG data is correlated between sensors and rather strong: the noise variance is
commonly even stronger that the signal power. It is thus customary to make several
repetitions of the same cognitive experiment, e.g., showing 50 times the same image
to a subject in order to record 50 times the electric activity of the visual cortex. The
multiple measurements are then classically averaged across the experiment’s repetitions
in order to increase the signal-to-noise ratio. In other words, popular estimators for
M/EEG usually discard the individual observations, and rely on Gaussian i.i.d. noise
models (Ou et al., 2009; Gramfort et al., 2013).

In this work we propose Concomitant Lasso with Repetitions (CLaR), an estimator that
is

• Designed to exploit all available measurements collected during repetitions of ex-
periments.
• Defined as the solution of a convex minimization problem, handled efficiently by

proximal block coordinate descent techniques.
• Built thanks to an explicit connection with nuclear norm smoothing. This can

also be viewed as a partial smoothing of the multivariate square-root Lasso (van
de Geer and Stucky, 2016).
• Shown (through extensive benchmarks with respect to existing estimators) to

leverage experimental repetitions to improve support identification,
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• Available as open source code to reproduce all the experiments.

In Section 5.2, we recall the framework of concomitant estimation, and introduce CLaR.
In Section 5.2.2, we detail the properties of CLaR, and derive an algorithm to solve it.
Finally, Section 5.3 is dedicated to experimental results.

5.2 Concomitant estimation with correlated noise

5.2.1 Model and proposed estimator

Probabilistic model. Let r be the number of repetitions of the experiment. The r ob-
servation matrices are denoted Y (1), . . . , Y (r) ∈ Rn×T with n the number of sensors/samples
and T the number of tasks/time samples. The mean over the repetitions of the obser-
vation matrices is written Ȳ = 1

r

∑r
l=1 Y

(l). Let X ∈ Rn×p be the design (or gain)
matrix, with p features stored column-wise: X = [X:1| . . . |X:p], where for a matrix
A ∈ Rm×n its jth column (resp. row) is denoted A:j ∈ Rm×1 (resp. Aj: ∈ R1×n. The
matrix B∗ ∈ Rp×T contains the coefficients of the linear regression model.

Each measurement (i.e., repetition of the experiment) follows the model:

∀l ∈ [r], Y (l) = XB∗ + S∗E(l) , (5.1)

where the entries of E(l) are i.i.d. samples from standard normal distributions, the
E(l)’s are independent, and S∗ ∈ Sn++ is the co-standard deviation matrix, and Sn++

(resp. Sn+) stands for the set of positive (resp. semi-definite positive) matrices. Note
that even if the observations Y (1), . . . , Y (r) differ because of the noise E(1), . . . ,E(r), B∗

and the noise structure S∗ are shared across repetitions.

Notation. The unit `p ball is written Bp, p ∈ [1,∞). For a, b ∈ R, we denote
(a)+ = max(a, 0), a ∨ b = max(a, b) and a ∧ b = min(a, b). The block soft-thresholding
operator at level τ > 0, is denoted BST(·, τ), and reads for any vector x, BST(x, τ) =(

1− τ/‖x‖
)

+
x. Let d ∈ N, and let C be a closed and convex subset of Rd.

To leverage the multiple repetitions while taking into account the noise structure, we
introduce the Concomitant Lasso with Repetitions (CLaR):

Definition 5.1. CLaR estimates the parameters of Model (5.1) by solving:

(B̂CLaR, ŜCLaR) ∈ arg min
B∈Rp×T
S�σ Idn

f(B, S)+λ
∥∥B
∥∥

2,1
, with f(B, S) ,

r∑
l=1

∥∥∥Y (l)−XB
∥∥∥2

S−1

2nTr +
Tr(S)

2n
,

(5.2)
where λ > 0 controls the sparsity of B̂CLaR and σ > 0 controls the smallest eigenvalue
of ŜCLaR.

In low SNR settings, a standard way to deal with strong noise is to use the averaged
observation Ȳ ∈ Rn×T instead of the raw observations. The associated model reads:

Ȳ = XB∗ + S̃∗Ẽ , (5.3)

with S̃∗ , S∗/
√
r and Ẽ has i.i.d. entries drawn from a standard normal distribution.

The SNR1 is multiplied by
√
r, yet the number of samples goes from rnT to nT , mak-

ing it statistically difficult to estimate the O(n2) parameters of S∗. CLaR generalizes
1See the definition we consider in eq. (5.46).
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the Smoothed Generalized Concomitant Lasso (Massias et al., 2018a), which has the
drawback of only targeting averaged observations:

Definition 5.2 (SGCL, Massias et al. 2018a). SGCL estimates the parameters of
Model (5.3), by solving:

(B̂SGCL, ŜSGCL) ∈ arg min
B∈Rp×T

S̃�σ/
√
r Idn

f̃(B, S̃)+λ
∥∥B
∥∥

2,1
, with f̃(B, S̃) ,

‖Ȳ −XB‖2
S̃−1

2nT
+

Tr(S̃)

2n
.

(5.4)

Remark 5.3. Note that ŜCLaR estimates S∗, while ŜSGCL estimates S̃∗ = S∗/
√
r. Since

we impose the constraint ŜCLaR � σ Idn, we rescale the constraint so that ŜSGCL �
σ/
√
r Idn in (5.4) for future comparisons. Also note that CLaR and SGCL are the

same when r = 1 and Y (1) = Ȳ .

The justification for CLaR is the following: if the quadratic loss
∥∥Y −XB

∥∥2 were
used, the parameters of Model (5.1) could be estimated by using either ‖Ȳ −XB‖2 or
1
r

∑‖Y (l) −XB‖2 as a data fitting term. Yet, both alternatives yield the same solutions
as the two terms are equal up to constants. Hence, the quadratic loss does not leverage
the multiple repetitions and ignores the noise structure. On the contrary, the more
refined data fitting term of CLaR allows to take into account the individual repetitions,
leading to improved performance in applications.

5.2.2 Properties of the proposed data fitting term

Let us analyze the data fitting term of CLaR, by connecting it to the Schatten 1-norm.
Let us define the following smoothing function:

ωσ(·) , 1

2

(
‖·‖2 + n

)
σ , (5.5)

and the inf-convolution of functions f1 and f2, f1� f2(y) , infx f1(x) + f2(y − x).
The name “smoothing” used in this chapter comes from the following fact: if f1 is a
closed proper convex function, then f∗1 + 1

2‖·‖2 is strongly convex, and thus its Fenchel
transform (f∗1 + 1

2‖·‖2)∗ = (f∗1 + (1
2‖·‖2)∗)∗ = (f1� 1

2‖·‖2)∗∗ = f1� 1
2‖·‖2 is smooth.

The next propositions are key to our framework and show the connection between the
SGCL, CLaR and the Schatten 1-norm:

Proposition 5.4 (Smoothing of the trace norm). For the choice ω(·) = 1
2 ‖·‖

2 + n
2 , and

with n ≤ T , the ωσ-smoothing of the Schatten-1 norm, i.e., the function ‖·‖S ,1�ωσ :
Rn×T 7→ R, has the following closed-form formula, for all Z ∈ Rn×T :

(‖·‖S ,1�ωσ)(Z) = min
S�σ Idn

1
2

∥∥Z∥∥2

S−1 + 1
2 Tr(S) . (5.6)

Proof The proof relies on a direct calculus. We will evaluate each member of
Equation (5.6) on a matrix Z ∈ Rn×T , through a singular value decomposition of
Z (Lemma 5.6).
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Proposition 5.5 (Usual properties of inf-convolution). Let g : Rd → R, h : Rd → R
be closed proper convex functions. Then, the following holds (see Parikh et al. 2013, p.
136):

h∗∗ = h , (5.7)
(h� g)∗ = h∗ + g∗ , (5.8)(

σg
(
·
σ

))∗
= σg∗ , (5.9)

‖·‖∗p = ιBp∗ , where
1

p
+

1

p∗
= 1 , (5.10)

(h+ δ)∗ = h∗ − δ, ∀δ ∈ R , (5.11)(
1
2 ‖·‖

2
)∗

= 1
2 ‖·‖

2 . (5.12)

We now compute each member of Equation (5.6) on a matrix Z ∈ Rn×T ,

Lemma 5.6. Let Z ∈ Rn×T and V diag(γ1, . . . , γn, 0, . . . , 0)W> its singular value de-
composition, then for the choice ω(·) = 1

2‖·‖2 + n
2 , and with n ≤ T :

a)
(
‖·‖S ,1�ωσ

)
(Z) = 1

2σ

∑
γi≤σ γ

2
i +

∑
γi>σ

γi + 1
2

∑
γi≤σ σ .

b) minS�σ Idn
1
2 Tr[Z>S−1Z] + 1

2 Tr(S) = 1
2σ

∑
γi≤σ γ

2
i +

∑
γi>σ

γi + 1
2

∑
γi≤σ σ .

We first compute the value of the right-hand member in Equation (5.6)
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Proof (Lemma 5.6 (a)).(
‖·‖S ,1�ωσ

)
(Z) =

(
‖·‖S ,1�ωσ

)∗∗
(Z) (using eq. (5.7))

=
(
‖·‖∗S ,1 + ω∗σ

)∗
(Z) (using eq. (5.8))

=

(
ιBS ,∞ + σ

2 ‖·‖2 −
n

2
σ

)∗
(Z) (using eq. (5.10))

=
(
σ
2 ‖·‖2 + ιBS ,∞

)∗
(Z) +

n

2
σ (using eq. (5.11))

= sup
U∈Rn×T

(
〈U,Z〉 − σ

2
‖U‖2 − ιBS ,∞(U)

)
+
n

2
σ

= sup
U∈BS ,∞

(
〈U,Z〉 − σ

2
‖U‖2

)
+
n

2
σ

= − inf
U∈BS ,∞

(
σ

2
‖U‖2 − 〈U,Z〉

)
+
n

2
σ

= −σ · inf
U∈BS ,∞

(
1
2‖U‖2 −

〈
U, Zσ

〉)
+
n

2
σ

= −σ · inf
U∈BS ,∞

(
1
2‖U − Z

σ ‖2 − 1
2σ2 ‖Z‖2

)
+
n

2
σ

= 1
2σ‖Z‖2 −

σ
2 · inf

U∈BS ,∞

(
‖U − Z

σ ‖2
)

+
n

2
σ

= 1
2σ‖Z‖2 −

σ
2 ‖ΠBS ,∞

(
Z
σ

)
− Z

σ ‖2 +
n

2
σ (with ΠBS ,∞ the projection on BS ,∞)

= 1
2σ‖Z‖2 +

n

2
σ − σ

2

(
‖V diag

(
γ1

σ ∧ 1− γ1

σ , . . . ,
γn
σ ∧ 1− γn

σ

)
W>‖2

)
(using ΠBS ,∞

(
Z
σ

)
= V diag

(
γ1

σ ∧ 1, . . . , γnσ ∧ 1
)
W>, see Beck 2017, Example 7.31)

= 1
2σ‖Z‖2 +

n

2
σ − σ

2

 n∑
i=1

(
γi
σ ∧ 1− γi

σ

)2


= 1

2σ‖Z‖2 +
n

2
σ − σ

2

 1

σ2

n∑
i=1

(
γi ∧ σ − γi

)2
= 1

2σ‖Z‖2 +
n

2
σ − σ

2

 1

σ2

∑
γi>σ

(
γi ∧ σ − γi

)2
= 1

2σ‖Z‖2 +
n

2
σ − σ

2

 1

σ2

∑
γi>σ

(
σ − γi

)2
= 1

2σ‖Z‖2 +
n

2
σ − σ

2

 1

σ2

∑
γi>σ

(
σ2 + γ2

i − 2σγi

)
= 1

2σ‖Z‖2 +
n

2
σ − σ

2

∑
γi>σ

1 +
1

σ2

∑
γi>σ

γ2
i − 2

1

σ

∑
γi>σ

γi


= 1

2σ‖Z‖2 +
n

2
σ − σ

2

∑
γi>σ

1− 1

2σ

∑
γi>σ

γ2
i +

∑
γi>σ

γi

=
1

2σ

∑
γi≤σ

γ2
i +

∑
γi>σ

γi +
1

2

∑
γi≤σ

σ .
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We now compute the value of the left-hand member in Equation (5.6)

Proof (Lemma 5.6 (b)). The minimum of minS�σ Idn
1
2 Tr[Z>S−1Z] + 1

2 Tr(S) is at-
tained at Ŝ = V diag(γ1 ∨ σ, . . . , γn ∨ σ)V > (see Massias et al. 2018a, Prop. 2). Thus
we have:

min
S�σ Idn

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) =

1

2
Tr[Z>Ŝ−1Z] +

1

2
Tr(Ŝ)

=
1

2
Tr[Ŝ−1ZZ>] +

1

2
Tr(Ŝ)

=
1

2
Tr[V diag(γ2

1/(γ1 ∨ σ), . . . , γ2
n/(γn ∨ σ))V >]

+
1

2
Tr[V diag(γ1 ∨ σ, . . . , γn ∨ σ)V >]

=
1

2

n∑
i=1

γ2
i

γi ∨ σ︸ ︷︷ ︸
1
2

∑
γi>σ

γi+
1

2σ

∑
γi≤σ

γ2
i

+
1

2

n∑
i=1

γi ∨ σ︸ ︷︷ ︸
1
2

∑
γi>σ

γi+
1
2

∑
γi≤σ

σ

=
1

2σ

∑
γi≤σ

γ2
i +

∑
γi>σ

γi +
1

2

∑
γi≤σ

σ .

Proof (Proposition 5.4). Proposition 5.4 is a direct consequence of Lemmas 5.6 (a)
and 5.6 (b).

Properties similar to Proposition 5.4 can be traced back to van de Geer and Stucky
(2016, Sec 2.2), who introduced the multivariate square-root Lasso:

B̂ ∈ arg min
B∈Rp×T

1

n
√
T
‖Ȳ −XB‖S ,1 + λ

∥∥B
∥∥

2,1
, (5.13)

and showed that if (Ȳ −XB̂)(Ȳ −XB̂)> � 0, the latter optimization problem admits
a variational2 formulation:

(B̂, Ŝ) ∈ arg min
B∈Rp×T ,
S̃�0

1

2nT
‖Ȳ −XB‖2S−1 +

Tr(S)

2n
+ λ

∥∥B
∥∥

2,1
. (5.14)

In other words Proposition 5.4 generalizes van de Geer (2016, Lemma 3.4) for all
matrices Ȳ − XB̂, getting rid of the condition (Ȳ − XB̂)(Ȳ − XB̂)> � 0. In the
present contribution, the problem formulation in Proposition 5.4 is motivated by com-
putational aspects, as it helps to address the combined non-smoothness of the data
fitting term ‖·‖S ,1 and the penalty term ‖·‖2,1. Note that another smoothing of the
nuclear norm was proposed in Argyriou et al. (2008); Bach et al. (2012, Sec. 5.2):

Z 7→ min
S�0

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) +

σ2

2
Tr(S−1) , (5.15)

2also called concomitant formulation since minimization is performed over an additional variable
(Owen, 2007; Ndiaye et al., 2017).
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which is a σ-smooth nσ-approximation of ‖·‖S ,1, therefore less precise than ours (Lemma 5.8).

First let us recall the definition of a smoothable function and a µ-smooth approximation
of Beck and Teboulle (2012, Def. 2.1):

Definition 5.7 (Smoothable function, µ-smooth approximation). Let g : E→
]
−∞,+∞

]
be a closed and proper convex function, and let E ⊆ dom(g) be a closed convex set. The
function g is called (α, δ,K)-smoothable on E if there exists δ1, δ2 satisfying δ1 + δ2 =
δ > 0 such that for every µ there exists a continuously differentiable convex function
gµ : E→

]
−∞,+∞

[
such that the following holds:

a) g(x)− δ1µ ≤ gµ(x) ≤ g(x) + δ2µ for every x ∈ E .

b) The function ∇gµ has a Lipschitz constant which is less than or equal to K + α
µ :

‖∇gµ(x)−∇gµ(y)‖ ≤
(
K +

α

µ

)∥∥x− y∥∥ for every x, y ∈ E . (5.16)

The function g is called a µ-smooth approximation of g with parameters (α, δ,K).

The nuclear norm ‖·‖S ,1 is nonsmooth (and not even differentiable at 0), but one can
construct a smooth approximation of the nuclear norm based on the following variational
formula, if ZZ> � 0:

‖Z‖S ,1 = min
S�0

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) , (5.17)

see van de Geer (2016, Lemma 3.4). When ZZ> � 0, one can approximate ‖·‖S ,1 with

min
S�σ Id

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) = ‖·‖S ,1�ωσ , (5.18)

as shown in Lemma 5.8. It can be shown that this approximation stays close to the
nuclear norm.

Lemma 5.8. Let Z ∈ Rn×T , (γ1, . . . , γn) be its singular values, and n ≤ T

a) ‖·‖S ,1�ωσ is a σ-smooth approximation of ‖·‖S ,1 with parameters (1, n2 , 0). More
precisely: ‖·‖S ,1�ωσ has a σ-Lipschitz gradient and

0 ≤ ‖·‖S ,1�ωσ − ‖·‖S ,1 =
σ

2

∑
γi<σ

(
1− γi

σ

)2

≤ σ

2
n . (5.19)

b) Z 7→ minS�0
1
2 Tr[Z>S−1Z] + 1

2 Tr(S) + σ2

2 Tr(S−1) is a σ-smooth approximation
of ‖·‖S ,1 with parameters (1, n, 0). More precicely: Z 7→ minS�0

1
2 Tr[Z>S−1Z] +

1
2 Tr(S) + σ2

2 Tr(S−1) has a gradient σ-Lipschitz and

0 ≤ min
S�0

1

2
Tr[Z>S−1Z]+

1

2
Tr(S)+

σ2

2
Tr(S−1)−‖Z‖S ,1 = σ

∑
i

1√
1 +

γ2
i
σ2 + γi

σ

≤ σn .

(5.20)



5.2. CONCOMITANT ESTIMATION WITH CORRELATED NOISE 115

c) It can be shown that with a fixed Lipschitz constant, the proposed smoothing is (at
least) uniformly a twice better approximation. This can be quantified even more
precisely:

0 ≤
(
‖·‖S ,1�ωσ

)
(Z)− ‖Z‖S ,1︸ ︷︷ ︸

Err1(Z)

≤ 1

2

min
S�0

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) +

σ2

2
Tr(S−1)− ‖Z‖S ,1︸ ︷︷ ︸

Err2(Z)

 .

(5.21)
More precisely

1

2
Err2(Z)− Err1(Z) =

σ

2

∑
γi≥σ


√

1 +
γ2
i

σ2
− γi
σ


︸ ︷︷ ︸

≥0

+
σ

2

∑
γi<σ

 1√
1 +

γ2
i
σ2 + γi

σ

− (1 +
γi
σ

)2


︸ ︷︷ ︸

≥0

,

(5.22)

which means that for a fixed smoothing constant σ, our smoothing is at least
twice uniformly better. Moreover the proposed smoothing can be much better, in
particular when a lot a singular values are around σ.

Proof (Lemma 5.8 (a)). Since ω is 1-smooth, Beck and Teboulle (2012, Thm. 4.1)
shows that ‖·‖S ,1�ωσ is σ-smooth.

Let Z ∈ Rn×T and let γ1, . . . , γn be its singular value decomposition:

(
‖·‖S ,1�ωσ

)
(Z)− ‖Z‖S ,1 =

1

2

n∑
i=1

γ2
i

γi ∨ σ
+

1

2

n∑
i=1

γi ∨ σ +
1

2

n∑
n+1

σ −
n∑
i=1

γi

=
1

2

n∑
i=1

(
γ2
i

γi ∨ σ
+ γi ∨ σ − 2γi

)
+

1

2

n∑
n+1

σ

=
1

2

∑
γi≤σ

(
γ2
i

γi ∨ σ
+ γi ∨ σ − 2γi

)
+

1

2

n∑
n+1

σ

=
1

2

∑
γi≤σ

(
γ2
i

σ
+ σ − 2γi

)
+

1

2

n∑
n+1

σ

=
1

2

∑
γi≤σ

(γi − σ)2

σ
. (5.23)

Hence,

0 ≤
(
‖·‖S ,1�ωσ

)
(Z)− ‖Z‖S ,1 =

1

2

∑
γi≤σ

(γi − σ)2

σ
≤ σ

2
n . (5.24)

Moreover this bound is attained when Z = 0.
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Proof (Lemma 5.8 (b)). Another regularization was proposed in Argyriou et al. (2008);
Bach et al. (2012, p. 62):

min
S�0

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) +

σ2

2
Tr(S−1)︸ ︷︷ ︸

h(S−1)

. (5.25)

By putting the gradient of the objective function in Equation (5.25) to zero it follows
that:

0 = ∇h(Ŝ−1) = ZZ> − Ŝ2 + σ2 Id , (5.26)

leading to :
Ŝ = (ZZ> + σ2 Id)

1
2 . (5.27)

Let γ1, . . . , γn be the singular values of Z:∑n
i=1

√
γ2
i + σ2 is a σ-smooth approximation of

∑n
i=1

√
γ2
i = ‖Z‖S ,1, see Beck and

Teboulle (2012, Example 4.6).

min
S�0

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) +

σ2

2
Tr(S−1)− ‖Z‖S ,1

=
1

2

n∑
i=1

 γ2
i√

γ2
i + σ2

+
√
γ2
i + σ2 +

σ2√
γ2
i + σ2

− ‖Z‖S ,1

=
1

2

n∑
i=1

γ2
i + γ2

i + σ2 + σ2√
γ2
i + σ2

− ‖Z‖S ,1

=
n∑
i=1

√
γ2
i + σ2 − ‖Z‖S ,1

=

n∑
i=1

(√
γ2
i + σ2 − γi

)

=

n∑
i=1

σ2√
γ2
i + σ2 + γi

= σ
n∑
i=1

1√
1 +

γ2
i
σ2 + γi

σ

(5.28)

≤ σn . (5.29)

Moreover this bound is attained when Z = 0.

Proof (Lemma 5.8 (c)). Using the formulas of Err1 (Equation (5.23)) and Err2 (Equa-
tion (5.28)), Equation (5.22) is direct. In Equation (5.22) the positivity of the first sum
is trivial, the positivity of the second can be obtained with an easy function study.
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Other alternatives to exploit the multiple repetitions without simply averaging them,
would consist in investigating other Schatten p-norms:

arg min
B∈Rp×T

1√
rT
‖[Y (1) −XB| . . . |Y (r) −XB]‖S ,p + λn

∥∥B
∥∥

2,1
. (5.30)

Without smoothing, problems of the form given in Equation (5.30) present the drawback
of having two nonsmooth terms, and calling for primal-dual algorithms (Chambolle
and Pock, 2011) with costly proximal operators. Even if the nonsmooth Schatten 1-
norm is replaced by the formula in Equation (5.6), numerical challenges remain: S
can approach 0 arbitrarily, hence, the gradient with respect to S of the data fitting
term is not Lipschitz over the optimization domain. Recently, Molstad (2019) proposed
two algorithms to directly solve Equation (5.30): a prox-linear ADMM, and accelerated
proximal gradient descent, the latter lacking convergence guarantees since the composite
objective has two nonsmooth terms. Before that, van de Geer and Stucky (2016) devised
a fixed point method, lacking descent guarantees. A similar problem was raised for the
concomitant Lasso by Ndiaye et al. (2017) who used smoothing techniques to address
it.

Finally one can explicitly link the data fitting term of the proposed estimator to the
smoothed trace norm.

Proposition 5.9 (Schatten 1-norm (nuclear/trace norm) with repetitions). Let Z(1), . . . , Z(r)

be matrices in Rn×T , we define Z ∈ Rn×Tr by Z = [Z(1)| . . . |Z(r)]. Then for the choice
ω(·) = 1

2‖·‖2 + n∧Tr
2 , then the following holds true:

(
‖·‖S ,1�ωσ(·)

)
(Z) = min

S�σ Idn

1

2

r∑
l=1

Tr
(
Z(l)>S−1Z(l)

)
+

1

2
Tr(S) . (5.31)

Proof The result is a direct application of Proposition 5.4, with Z = [Z(1)| . . . |Z(r)].
It suffices to notice that TrZ>S−1Z =

∑r
l=1 Tr

(
Z(l)>S−1Z(l)

)
.

5.2.3 Properties of the proposed estimator and algorithmic details

We detail the principal results needed to solve Problem (5.2) numerically, leading to the
implementation proposed in Algorithm 5.1. We first recall useful results for alternate
minimization of convex composite problems.

Proposition 5.10 (Joint convexity). The function f defined in Problem (5.2) is jointly
convex in (B, S). Moreover, f is convex and smooth on the feasible set, and ‖·‖2,1 is
convex and separable in Bj:’s, thus minimizing the objective alternatively in S and in
Bj:’s (Algorithm 5.1) converges to a global minimum.

Proof

f(B, S) =
1

2nTr

r∑
1

‖Y (l) −XB‖2S−1 +
1

2n
Tr(S) = Tr(ZTS−1Z) +

1

2n
Tr(S) ,

with Z = 1√
2nTr

[Y (1) −XB| . . . |Y (r) −XB].
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Algorithm 5.1 Alternate minimization for CLaR
input : X, Ȳ , σ, λ, fdual, niter

init : B = 0p,T , S−1 = σ−1 Idn, R̄ = Ȳ , covY = 1
r

∑r
l=1 Y

(l)Y (l)> // precomputed

for t = 1, . . . , niter do
if t = 1 (mod fdual) then // noise update

RR> = RRT(covY , Y,X,B) // Eq. (5.40)

S ← ClSqrt
(

1
TrRR

>, σ
)

// Eq. (5.33)

for j = 1, . . . , p do
Lj = X>:j S

−1X:j

for j = 1, . . . , p do // coef. update
R̄← R̄+X:jBj: // cheap residuals update

Bj: ← BST

(
X>:j S

−1R̄

Lj
, λnTLj

)
R̄← R̄−X:jBj: // cheap residuals update

return B, S

First note that the (joint) function (Z,Σ) 7→ TrZ>Σ−1Z is jointly convex over Rn×T ×
Sn++, see Boyd and Vandenberghe (2004, Example 3.4). This means that f is jointly
convex in (Z, S), moreover B 7→ 1√

2nTr
[Y (1)−XB| . . . |Y (r)−XB] is linear in B, thus f

is jointly convex in (B, S), meaning that (B, S)→ f+λ‖·‖2,1 is jointly convex in (B, S) .
Moreover the constraint set is convex and thus solving CLaR is a convex problem.

The function f is convex and smooth on the feasible set and ‖·‖2,1 is convex in B and
separable in Bj:’s, thus (see Tseng 2001; Tseng and Yun 2009a) f + λ‖·‖2,1 can be min-
imized through coordinate descent in S and the Bj:’s (on the feasible set).

Hence, for our alternate minimization implementation, we only need to consider solving
problems with B or S fixed, which we detail in the next propositions. Let us first defined
the clipped square root, which is used in the minimization in S (Proposition 5.12).

Definition 5.11 (Clipped Square Root). For Σ ∈ Sn+ with eigenvalue decomposition
Σ = U diag(γ2

1 , . . . , γ
2
n)U> (U is orthogonal), let us define the Clipped Square Root

operator:

ClSqrt(Σ, σ) = U diag(γ1 ∨ σ, . . . , γn ∨ σ)U> . (5.32)

Proposition 5.12 (Minimization in S). Let B ∈ Rn×T be fixed. The minimization of
f(B, S) with respect to S with the constraint S � σ Idn admits the closed-form solution:

S = ClSqrt

(
1

rT

r∑
l=1

(Y (l) −XB)(Y (l) −XB)>, σ

)
. (5.33)

Proof Minimizing f(B, ·) amounts to solving

arg min
S�σ Idn

1
2‖Z‖2S−1 + 1

2 Tr(S) , with Z =
1√
r

[Z(1)| . . . |Z(l)] . (5.34)

The solution is ClSqrt

(
ZZ>, σ

)
(see Massias et al. 2018a, Appendix A2), with ZZ> =

1
r

∑r
l=1 Z

(l)Z(l)>.
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Proposition 5.13. For a fixed S ∈ Sn++, each step of the block minimization of f(·, S)+
λ ‖·‖2,1 in the jth line of B admits a closed-form solution:

Bj: = BST

(
Bj: +

X>:j S
−1(Ȳ−XB)

‖X:j‖2
S−1

, λnT
‖X:j‖2

S−1

)
. (5.35)

Proof The function to minimize is the sum of a smooth term f(·, S) and a nonsmooth
but separable term, ‖·‖2,1, whose proximal operator 3 can be computed:

• f is ‖X:j‖2S−1/nT -smooth with respect to Bj:, with partial gradient

∇jf(·, S) = − 1

nT
X>:j S

−1(Ȳ −XB) . (5.36)

• ‖B‖2,1 =
∑p

j=1‖Bj:‖ is row-wise separable over B, with

proxλnT/‖X:j‖2
S−1 ,‖·‖(·) = BST

(
·, λnT

‖X:j‖2S−1

)
. (5.37)

Hence, proximal block-coordinate descent converges (Tseng and Yun, 2009a), and the
update are given by Equation (5.35). The closed-form formula arises since the smooth
part of the objective is quadratic and isotropic with respect to Bj: .

As for other Lasso-type estimators, there exists λmax ≥ 0 such that whenever λ ≥ λmax,
the estimated coefficients vanish. This λmax helps calibrating roughly λ in practice by
choosing it as a fraction of λmax.

Proposition 5.14 (Critical regularization parameter). For the CLaR estimator we
have: with Smax , ClSqrt

(
1
Tr

∑r
l=1 Y

(l)Y (l)>, σ
)
,

∀λ ≥ λmax ,
1

nT
‖X>S−1

maxȲ ‖2,∞, B̂CLaR = 0 . (5.38)

Proof Fermat’s rules states

B̂ = 0⇔ 0 ∈ ∂
(
f(·, Smax) + λ‖·‖2,1

)
(0)

⇔ −∇f(·, Smax) ∈ λB‖·‖2,∞
⇔ 1

nT
‖X>S−1

maxȲ ‖2,∞ , λmax ≤ λ . (5.39)

Convex formulation benefits. Thanks to the convex formulation, convergence of Al-
gorithm 5.1 can be ensured using the duality gap as a stopping criterion (as it guarantees
a targeted sub-optimality level). In addition, convexity allows to leverage acceleration
methods such as working sets strategies (Fan and Lv, 2008; Tibshirani et al., 2012;

3As a reminder, for a scalar t > 0, the proximal operator of a function h : Rd → R can be defined
for any x0 ∈ Rd by proxt,h(x0) = argminx∈Rd

1
2t
‖x− x0‖2 + h(x) .
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Johnson and Guestrin, 2015; Massias et al., 2018b) or safe screening rules (El Ghaoui
et al., 2012; Fercoq et al., 2015) while retaining theoretical convergence guarantees.
Such techniques are trickier to adapt in the non-convex case, as they could change the
local minima reached.

Choice of σ. Although σ has a smoothing interpretation, from a practical point of view
it remains an hyperparameter to set. Following guidelines from Chapter 4, σ is always
chosen as follows: σ =

∥∥Y ∥∥ /(1000 × nT ). In practice, the experimental results were
little affected by the choice of σ.

Remark 5.15. Once covY , 1
r

∑r
1 Y

(l)Y (l)> is pre-computed, the cost of updating S
does not depend on r, i.e., is the same as working with averaged data. Indeed, with
R = [Y (1) −XB| . . . |Y (r) −XB], the following computation can be done in O(qn2).

RR> = RRT(covY , Y,X,B) , rcovY + r × (XB)(XB)> − rȲ >(XB)− r(XB)>Ȳ .
(5.40)

Proof

RR> =

r∑
l=1

R(l)R(l)>

=

r∑
l=1

(Y (l) −XB)(Y (l) −XB)>

=

r∑
l=1

Y (l)Y (l)> −
r∑
1

Y (l)(XB)> −
r∑
1

XBY (l)> + rXB(XB)>

= rcovY − rȲ >XB− r(XB)>Ȳ + rXB(XB)> . (5.41)

5.3 Experiments

Our Python code (with Numba compilation, Lam et al. 2015) is released as an open
source package: https://github.com/QB3/CLaR. The following estimators are com-
pared:

• CLaR defined with Problem (5.2) (ours).

• SGCL defined with Problem (5.4) (Massias et al., 2018a).

• `2,1-MLE, an `2,1 version of MLE (Lee and Liu, 2012; Chen and Banerjee, 2017).
When minimizing `2,1-Maximum Likelihood the natural parameters of the problem
are the regression coefficients B and the precision matrix Σ−1. Since real M/EEG
covariance matrices are not full rank, one has to be algorithmically careful when
Σ becomes singular. To avoid such numerical errors and to be consistent with the
smoothed estimator proposed in the chapter (CLaR), let us define the (smoothed)
`2,1-MLE as following:

(B̂`2,1−MLE, Σ̂`2,1−MLE) ∈ arg min
B∈Rp×T
Σ�σ2/r2

‖Ȳ −XB‖2Σ−1−log det(Σ−1)+λ‖B‖2,1 , (5.42)

https://github.com/QB3/CLaR
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• `2,1-MLER, a version of the `2,1-MLE with multiple repetitions:

(B̂`2,1MLER, Σ̂`2,1MLER) ∈ arg min
B∈Rp×T

Σ�σ2

r∑
1

‖Y (l) −XB‖2Σ−1 − log det(Σ−1) + λ‖B‖2,1 .

(5.43)
Problems (5.42) and (5.43) are not convex because the objective functions are not
convex in (B,Σ−1), however they are biconvex, i.e., convex in B and convex in
Σ−1. Alternate minimization can be used to solve Problems (5.42) and (5.43),
but without guarantees to converge toward a global minimum.

• MRCER, an `2,1 penalized version of MRCE (Rothman et al., 2010) with repeti-
tions. MRCE jointly estimates the regression coefficients (assumed to be sparse)
and the precision matrix (i.e., the inverse of the covariance matrix), which is sup-
posed to be sparse as well. `2,1-MRCE is defined as the solution of the following
optimization problem:

(B̂MRCE, Σ̂MRCE) ∈ arg min
B∈Rp×T

Σ−1�0

‖Ȳ −XB‖2Σ−1 − log det(Σ−1) +λ‖B‖2,1 +µ‖Σ−1‖1 .

(5.44)
Problem (5.44) is not convex, but can be solved heuristically (see Rothman et al.
2010 for details) by coordinate descent for the updates in Bj:’s and solving a
Graphical Lasso (Friedman et al., 2008) for the update in Σ−1.

• MTL, the Multi-Task Lasso (Obozinski et al., 2010). It is the usual estimator used
when the additive noise is supposed to be homoscedastic (with no correlation).
MTL is obtained by solving

B̂MTL ∈ arg min
B∈Rp×T

1

2nT
‖Ȳ −XB‖2 + λ‖B‖2,1 . (5.45)

Each estimator, proposed or compared to is based on an optimization problem to solve.
Each optimization problem is solve with block coordinate descent, whether there is the-
oretical guarantees for it to converge toward a global minimum (for convex formulations,
CLaR, SGCL and MTL), or not (for non-convex formulations, `2,1-MLE, `2,1-MLER,
MRCER). The cost for the updates for each algorithm can be found in Table 5.1. The
formula for the updates in Bj:’s and S/Σ for each algorithm can be found in Table 5.2.
Let fdual be the number of updates of B for one update of S or Σ.

Table 5.1 – Algorithms cost in time summary.

CD epoch cost convex dual gap cost

CLaR O(n
3+qn2

fdual + pn2 + pnq) yes O(rnT + p)

SGCL O(n
3+qn2

fdual + pn2 + pnq) yes O(nT + p)

`2,1-MLER O(n
3+qn2

fdual + pn2 + pnq) no not convex

`2,1-MLE O(n
3+qn2

fdual + pn2 + pnq) no not convex

MRCER O(O(glasso)
fdual + pn2 + pnq) no not convex

MTL O(npT ) yes O(nT + p)
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Recalling that Σemp , 1
T (Ȳ −XB)(Ȳ −XB)> and Σemp,r , 1

rT

∑r
l=1(Y (l)−XB)(Y (l)−

XB)>, a summary of the updates in S/Σ and Bj:’s for each algorithm is given in
Table 5.2.

Comments on Table 5.2 The updates in S/Σ and Bj:’s are given in Table 5.2.
Although the updates may look similar, all the algorithms can lead to very different
results, see Figures 5.6, 5.8, 5.10 and 5.12.

Table 5.2 – Algorithms updates summary

update in Bj: update in S/Σ

CLaR Bj: = BST

(
Bj: +

X>:j S
−1(Ȳ−XB)

‖X:j‖2
S−1

, λnT
‖X:j‖2

S−1

)
S = ClSqrt(Σemp,r, σ)

SGCL Bj: = BST

(
Bj: +

X>:j S
−1(Ȳ−XB)

‖X:j‖2
S−1

, λnT
‖X:j‖2

S−1

)
S = ClSqrt(Σemp, σ)

`2,1-MLER Bj: = BST

(
Bj: +

X>:jΣ−1(Ȳ−XB)

‖X:j‖2
Σ−1

, λnT
‖X:j‖2

Σ−1

)
Σ = Cl(Σemp,r, σ2)

`2,1-MLE Bj: = BST

(
Bj: +

X>:jΣ−1(Ȳ−XB)

‖X:j‖2
Σ−1

, λnT
‖X:j‖2

Σ−1

)
Σ = Cl(Σemp, σ2)

MRCER Bj: = BST

(
Bj: +

X>:jΣ−1(Ȳ−XB)

‖X:j‖2
Σ−1

, λnT
‖X:j‖2

Σ−1

)
Σ = glasso(Σemp,r, µ)

MTL Bj: = BST

(
Bj: +

X>:j (Ȳ−XB)

‖X:j‖2 , λnT
‖X:j‖2

)
no update in S/Σ

5.3.1 Synthetic data

Here we demonstrate the ability of our estimator to recover the support i.e., the ability
to identify the predictive features. There are n = 150 observations, p = 500 features,
T = 100 tasks. The design X is random with Toeplitz-correlated features with para-
meter ρX = 0.6 (correlation between X:i and X:j is ρ|i−j|X ), and its columns have unit
Euclidean norm. The true coefficient B∗ has 30 non-zeros rows whose entries are inde-
pendent and normally centered distributed. S∗ is a Toeplitz matrix with parameter ρS .
The SNR is fixed and constant across all repetitions

SNR , ‖XB∗‖/√r‖XB∗ − Ȳ ‖ . (5.46)

For Figures 5.1 to 5.3, the figure of merit is the ROC curve, i.e., the true positive
rate (TPR) against the false positive rate (FPR). For each estimator, the ROC curve
is obtained by varying the value of the regularization parameter λ on a geometric grid
of 160 points, from λmax (specific to each algorithm) to λmin, the latter also being
estimator specific and chosen to obtain a FPR larger than 0.4.

Influence of noise structure. Figure 5.1 represents the ROC curves for different values
of ρS . As ρS increases, the noise becomes more and more correlated. From left to right,
the performance of CLaR, SGCL, MRCER, `2,1-MRCE, and `2,1-MLER increases as
they are designed to exploit correlations in the noise, while the performance of MTL
decreases, as its i.i.d. Gaussian noise model becomes less and less valid.

Influence of SNR. On Figure 5.2 we can see that when the SNR is high (left), all es-
timators (except `2,1-MLE) reach the (0, 1) point. This means that for each algorithm
(except `2,1-MLE), there exists a λ such that the estimated support is exactly the true
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Figure 5.1 – Influ-
ence of noise struc-
ture. ROC curves
of support recovery
(ρX = 0.6, SNR =
0.03, r = 20) for dif-
ferent ρS values.
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Figure 5.2 – Influ-
ence of SNR. ROC
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ρS = 0.4, r = 20) for
different SNR values.
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Figure 5.3 – Influ-
ence of the number
of repetitions. ROC
curves of support re-
covery (ρX = 0.6,
SNR = 0.03, ρS = 0.4)
for different r values.

one. However, when the SNR decreases (middle), the performance of SGCL and MTL
starts to drop, while that of CLaR, `2,1-MLER and MRCER remains stable (CLaR
performing better), highlighting their capacity to leverage multiple repetitions of meas-
urements to handle the noise structure. Finally, when the SNR is too low (right), all
algorithms perform poorly, but CLaR, `2,1-MLER and MRCER still performs better.

Influence of the number of repetitions. Figure 5.3 shows ROC curves of all compared
approaches for different r, starting from r = 1 (left) to 100 (right). Even with r = 20
(middle) CLaR outperforms the other estimators, and when r = 100 CLaR can better
leverage the large number of repetitions.

5.3.2 Realistic data

We now evaluate the estimators on realistic magneto- and electroencephalography
(M/EEG) data. The M/EEG recordings measure the electrical potential and mag-
netic fields induced by the active neurons. Data are time series of length T with n
sensors and p sources mapping to locations in the brain. Because the propagation of
the electromagnetic fields is driven by the linear Maxwell equations, one can assume that
the relation between the measurements Y (1), . . . , Y (r) and the amplitudes of sources in
the brain B∗ is linear.

The M/EEG inverse problem consists in identifying B∗. Because of the limited number
of sensors (a few hundreds in practice), as well as the physics of the problem, the
M/EEG inverse problem is severely ill-posed and needs to be regularized. Moreover,
the experiments being usually short (less than 1 s.) and focused on specific cognitive
functions, the number of active sources is expected to be small, i.e., B∗ is assumed to be
row-sparse. This plausible biological assumption motivates the framework of Section 5.2
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(Ou et al., 2009).

Dataset. We use the sample dataset 4 from the MNE software (Gramfort et al., 2014).
The experimental conditions here are auditory stimulations in the right or left ear,
leading to two main foci of activations in bilateral auditory cortices (i.e., 2 non-zeros
rows for B∗). For this experiment, we keep only the gradiometer magnetic channels.
After removing one channel corrupted by artifacts, this leads to n = 203 signals. The
length of the temporal series is T = 100, and the data contains r = 50 repetitions. We
choose a source space of size p = 1281 which corresponds to about 1 cm distance between
neighboring sources. The orientation is fixed, and normal to the cortical mantle.

Realistic MEG data simulations. We use here true empirical values for X and S by
solving Maxwell equations and taking an empirical co-standard deviation matrix. To
generate realistic MEG data we simulate neural responses B∗ with 2 non-zeros rows
corresponding to areas known to be related to auditory processing (Brodmann area
22). Each non-zero row of B∗ is chosen as a sinusoidal signal with realistic frequency
(5Hz) and amplitude (amp ∼ 1− 10 nAm). We finally simulate r MEG signals Y (l) =
XB∗ + S∗E(l), E(l) being matrices with i.i.d. normal entries.

Preprocessing steps for realistic and real data. When using multi-modal data without
whitening, one has to rescale properly data, indeed data needs to have the same or-
der of magnitude, otherwise some mode (for example EEG data) could be (almost)
completely ignored by the optimization algorithm. The preprocessing pipeline used to
rescale realistic data (Figures 5.4 and 5.5) and real data (Figures 5.6, 5.8, 5.10 and 5.12)
is described in Algorithm 5.2.

4publicly available real M/EEG data recorded after auditory or visual stimulations.
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(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.6 – Real data, left auditory stimulations (n = 102, p = 7498, T = 76, r = 63)
Sources found in the left hemisphere (top) and the right hemisphere (bottom) after left
auditory stimulations.

Algorithm 5.2 Preprocessing steps for realistic and real data

input : X,Y (1), . . . , Y (r)

// rescale each line of X

for i = 1, . . . , n do
for l = 1, . . . , r do

Y
(l)
i: ← Y

(l)
i: /‖Xi:‖

Xi: ← Xi:/‖Xi:‖
// rescale each column of X

for j = 1, . . . , p do
X:j ← X:j/‖X:j‖

return X,Y (1), . . . , Y (r)

The signals being contaminated with correlated noise, if one wants to use homoscedastic
solvers it is necessary to whiten the data first (and thus to have an estimation of the
covariance matrix, the later often being unknown). In this experiment we demonstrate
that without this whitening process, the homoscedastic solver MTL fails, as well as
solvers which does not take in account the repetitions: SGCL and `2,1-MLE. In this
scenario CLaR, `2,1-MLER and MRCER do succeed in recovering the sources, CLaR
leading to the best results. As for the synthetic data, Figures 5.4 and 5.5 are obtained
by varying the estimator-specific regularization parameter λ from λmax to λmin on a
geometric grid.

Amplitude influence. Figure 5.5 shows ROC curves for different values of the amplitude
of the signal. When the amplitude is high (right), all the algorithms perform well,
however when the amplitude decreases (middle) only CLaR leads to good results, almost
hitting the (0, 1) corner. When the amplitude gets lower (left) all algorithms perform
worse, CLaR still yielding the best results.

Influence of the number of repetitions. Figure 5.4 shows ROC curves for different num-
ber of repetitions r. When the number of repetitions is high (right, r = 50), the
algorithms taking into account all the repetitions (CLaR, `2,1-MLER, MRCER) per-
form best, almost hitting the (0, 1) corner, whereas the algorithms which do not take
into account all the repetitions (`2,1-MLE, MTL, SGCL) perform poorly. As soon as the
number of repetitions decreases (middle and left) the performance of all the algorithms
except CLaR starts dropping severely. CLaR is once again the algorithm taking the
most advantage of the number of repetitions.
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(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.7 – Real data, right auditory stimulations (n = 102, p = 7498, T = 76, r = 33)
Sources found in the left hemisphere (top) and the right hemisphere (bottom) after
right auditory stimulations.

5.3.3 Real M/EEG data

As before, we use the sample dataset, keeping only the magnetometer magnetic channels
(n = 102 signals). We choose a source space of size p = 7498 (about 5mm between
neighboring sources). The orientation is fixed, and normal to the cortical mantle. As
for realistic data, X is the empirical design matrix, but this time we use the empirical
measurements Y (1), . . . , Y (r). As two sources are expected (one in each hemisphere, in
bilateral auditory cortices), we vary λ by dichotomy between λmax (returning 0 sources)
and a λmin (returning more than 2 sources), until finding a λ giving exactly 2 sources.
Results are provided in Figures 5.6 and 5.7. Running times of each algorithm are of the
same order of magnitude and can be found in Figure 5.14.

Audiroy stimulations. Comments on Figure 5.6, left auditory stimulations. Sources
found by the algorithms are represented by red spheres. SGCL, `2,1-MLE and MRCER
completely fail, finding sources that are not in the auditory cortices at all (SGCL sources
are deep, thus not in the auditory cortices, and cannot be seen). MTL and `2,1-MLER
do find sources in auditory cortices, but only in one hemisphere (left for MTL and right
for `2,1-MLER). CLaR is the only one that finds one source in each hemisphere in the
auditory cortices as expected.

Comments on Figure 5.7, right auditory stimulations. In this experiment we only keep
r = 33 repetitions (out of 65 available) and it can be seen that only CLaR finds correct
sources, MTL finds sources only in one hemisphere and all the other algorithms do
find sources that are not in the auditory cortices. This highlights the robustness of
CLaR, even with a limited number of repetitions, confirming previous experiments (see
Figure 5.3).

Figures 5.8 and 5.9 show the solution given by each algorithm on real data after right
auditory stimulations. As two sources are expected (one in each hemisphere, in bilateral
auditory cortices), we vary λ by dichotomy between λmax (returning 0 sources) and a
λmin (returning more than 2 sources), until finding a lambda giving exactly 2 sources.
Figure 5.8 (resp. Figure 5.9) shows the solution given by the algorithms taking in account
all the repetitions (resp. only half of the repetitions). When the number of repetitions
is high (Figure 5.8) only CLaR and `2,1-MLER find one source in each auditory cortex,
MTL does find sources only in one hemisphere, all the other algorithms fail by finding
sources not in the auditory cortices at all. Moreover when the number of repetitions
is decreasing (Figure 5.9) `2,1-MLER fails and only CLaR does find 2 sources, one in
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(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.8 – Real data (n = 102, p = 7498, T = 76, r = 65) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.9 – Real data (n = 102, p = 7498, T = 76, r = 33) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.10 – Real data (n = 102, p = 7498, T = 48, r = 71) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after left visual stimulations.

each hemisphere. Once again CLaR is more robust and performs better, even when the
number of repetitions is low.

Visual stimulations. Figures 5.10 and 5.11 show the results for each algorithm after
left visual stimulations. As one source is expected (in the right hemisphere), we vary
λ by dichotomy between λmax (returning 0 sources) and a λmin (returning more than 1
sources), until finding a lambda giving exactly 1 source. When the number of repetitions
is high (Figure 5.10) only CLaR and `2,1-MLER do find a source in the visual cortex.
When the number of repetitions decreases, CLaR and `2,1-MLER still find one source
in the visual cortex, other algorithms fail. This highlights this importance of taking
into account the repetitions.
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(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.11 – Real data (n = 102, p = 7498, T = 48, r = 36) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after left visual stimulations.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.12 – Real data (n = 102, p = 7498, T = 48, r = 61) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right visual stimulations.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) MRCER (f) MTL

Figure 5.13 – Real data (n = 102, p = 7498, T = 48, r = 31) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right visual stimulations.

Figures 5.12 and 5.13 show the results for each algorithm after right visual stimulations.
As one source is expected (in the left hemisphere), we vary λ by dichotomy between
λmax (returning 0 sources) and a λmin (returning more than 1 sources), until finding a
lambda giving exactly 1 source. When the number of repetitions is high (Figure 5.12)
only CLaR, `2,1-MLER and MTL do find a source in the visual cortex. When the
number of repetitions decreases (Figure 5.13), only CLaR finds one source in the visual
cortex, other algorithms fail. This highlights once again the robustness of CLaR, even
with a limited number of repetitions.

Time comparison. The goal of this experiment is to show that our algorithm (CLaR)
is as costly as a Multi-Task Lasso or other competitors (in the M/EEG context, i.e., n
not too large). The time taken by each algorithm to produce Figure 5.6 (real data,
left auditory stimulations) is given in Figure 5.14. In this experiment the toler-
ance is set to tol=10−3, the safe stopping criterion is duality gap < tol (only avail-
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Figure 5.14 – Time comparison, real data, n = 102, p = 7498, T = 54, r = 56 Time for
each algorithm to produce Figure 5.6.

able for convex optimization problems). The heuristic stopping criterion is "if the
objective do not decrease enough anymore then stop" i.e., if objective(B(t),Σ(t)) −
objective(B(t+1),Σ(t+1)) < tol/10 then stop. The safe stopping criterion is only avail-
able for CLaR, SGCL and MTL (it takes too much time i.e., more than 10min for SGCL
to have a duality gap under the fixed tol, so we remove it).

Comment on Figure 5.14 Figure 5.14 shows that if we use the heuristic stopping cri-
terion, CLaR is as fast the other algorithm. In addition CLaR has a safe stopping
criterion which only take 2 to 3 more time than the heuristic one (less than 10sec).

Conclusion. This work introduces CLaR, a sparse estimator for multitask regression.
It is designed to handle correlated Gaussian noise in the context of repeated observa-
tions, a standard framework in applied sciences such as neuroimaging. The resulting
optimization problem can be solved efficiently with state-of-the-art convex solvers, and
the algorithmic cost is the same as for single repetition data. The theory of smoothing
connects CLaR to the Schatten 1-Lasso in a principled manner, which opens the way
to the use of more sophisticated data fitting terms. The benefits of CLaR for support
recovery in the presence of non-white Gaussian noise were extensively evaluated against
a large number of competitors, both on simulations and on empirical MEG data.
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In Chapters 4 and 5 we investigated pivotal estimators, for which the regularization
parameter admits a closed-form formula. However, as illustrated in Chapter 1, this
route relies on strong hypotheses usually unrealistic on real data (Figure 1.5), and users
still have to resort to model calibration (see Section 5.3). In this chapter we invest-
igate another route: hyperparameter optimization. Indeed, finding the optimal hyper-
parameters of a model can be cast as a bilevel optimization problem, typically solved
using zero-order techniques. In this work we study first-order methods when the inner
optimization problem is convex but nonsmooth. Capitalizing on model identification
(Theorem 2.13) and local linear convergence (Theorem 2.16) results from Chapter 2, we
show that the forward-mode differentiation of proximal gradient descent and proximal
coordinate descent yield sequences of Jacobians converging toward the exact Jacobian.
Using implicit differentiation, we show it is possible to leverage the non-smoothness
of the inner problem to speed up the computation. Finally, we provide a bound on
the error made on the hypergradient when the inner optimization problem is solved
approximately. Results on regression and classification problems reveal computational
benefits for hyperparameter optimization, especially when multiple hyperparameters
are required.

This chapter is based on the following works, one accepted to ICML 2020, the other
currently under review for the Journal of Machine Learning Research:
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• Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon.
Implicit differentiation of Lasso-type models for hyperparameter optimization.
ICML, 2020

• Q. Bertrand, Q. Klopfenstein, M. Massias, M. Blondel, S. Vaiter, A. Gramfort,
and J. Salmon. Implicit differentiation for fast hyperparameter selection in non-
smooth convex learning. arXiv preprint arXiv:2105.01637, 2021

6.1 Introduction

Almost all models in machine learning require at least one hyperparameter, the tuning
of which drastically affects accuracy. This is the case for many popular estimators,
where the regularization hyperparameter controls the trade-off between a data fidelity
term and a regularization term. Such estimators, including Ridge regression (Hoerl and
Kennard, 1970), Lasso (Tibshirani, 1996; Chen et al., 1998), elastic net (Zou and Hastie,
2005), sparse logistic regression (Koh et al., 2007), support-vector machine/SVM (Boser
et al., 1992; Platt, 1999) are often cast as an optimization problem (Table 6.1)

Table 6.1 – Examples of nonsmooth inner problems as in (6.1).

Inner problem, Φ f(β) gj(βj , λ) eλmax

Lasso 1
2n‖y −Xβ‖2 eλ|βj | 1

n‖X>y‖∞
elastic net 1

2n‖y −Xβ‖2 eλ1 |βj |+ 1
2e
λ2β2

j
1
n‖X>y‖∞

sparse log. reg. 1
n

∑n
i=1 ln(1 + e−yiXi:β) eλ|βj | 1

2n‖X>y‖∞
dual SVM 1

2‖(y �X)>β‖2 −∑p
j=1 βj ι[0,eλ](βj) −

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) , f(β) +

p∑
j=1

gj(βj , λ)︸ ︷︷ ︸
,g(β,λ)

, (6.1)

with smooth f : Rp → R (i.e., with Lipschitz gradient), proper closed convex (possibly
nonsmooth) functions gj(·, λ), and a regularization hyperparameter λ ∈ Rr. In the
examples of Table 6.1, the computation of f involves a design matrix X ∈ Rn×p; and
the cost of computing ∇f(β) is O(np). In the SVM example, since we consider the dual
problem, we chose to reverse the roles of n and p to enforce β ∈ Rp. We often drop the
λ dependency and write β̂ instead of β̂(λ) when it is clear from context.

For a fixed λ, the issue of solving efficiently Problem (6.1) has been largely explored.
If the functions gj are smooth, one can use solvers such as L-BFGS (Liu and Nocedal,
1989), SVRG (Johnson and Zhang, 2013; Zhang et al., 2013), or SAGA (Defazio et al.,
2014). When the functions gj are nonsmooth, Problem (6.1) can be tackled efficiently
with stochastic algorithms (Pedregosa et al., 2017) or using working set methods (Fan
and Lv, 2008; Tibshirani et al., 2012) combined with coordinate descent (Tseng and
Yun, 2009a), see overview by Massias et al. (2020b). The question of model selection,
i.e., how to select the hyperparameter λ ∈ Rr (potentially multidimensional), is more
open, especially when the dimension r of the regularization hyperparameter λ is large.
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Table 6.2 – Examples of outer criteria used for hyperparameter selection.

Criterion Problem type Criterion C(β)

Hold-out mean squared error Regression 1
n‖yval −Xvalβ‖2

Stein unbiased risk estimate (SURE)1 Regression ‖y −Xβ‖2 − nσ2 + 2σ2dof(β)

Hold-out logistic loss Classification 1
n

∑n
i=1 ln(1 + e−y

val
i Xval

i: β)

Hold-out smoothed Hinge loss2 Classification 1
n

∑n
i=1 `(y

val
i , Xval

i: β)

For the Lasso, a broad literature has been devoted to parameter tuning. Under strong
hypothesis on the design matrix X, it is possible to derive guidelines for the setting of
the regularization parameter λ (Lounici, 2008; Bickel et al., 2009; Belloni et al., 2011).
Unfortunately, these guidelines rely on quantities which are typically unknown in prac-
tice, and Lasso users still have to resort to other techniques to select the hyperparameter
λ.

A popular approach for hyperparameter selection is hyperparameter optimization (Ko-
havi and John, 1995; Hutter et al., 2015; Feurer and Hutter, 2019): one selects the
hyperparameter λ such that the regression coefficients β̂(λ) minimize a given criterion
C : Rp → R. Here C should ensure good generalization, or avoid overcomplex mod-
els. Common examples (see Table 6.2) include the hold-out loss (Devroye and Wagner,
1979), the cross-validation loss (CV, Stone and Ramer 1965, see Arlot and Celisse 2010
for a survey), the AIC (Akaike, 1974), BIC (Schwarz, 1978) or SURE (Stein, 1981)
criteria. Formally, the hyperparameter optimization problem is a bilevel optimization
problem (Colson et al., 2007):

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(6.2)

Popular approaches to solve (the generally non-convex) Problem (6.2) include zero-
order optimization (gradient-free) techniques such as grid-search, random-search (Rastri-
gin, 1963; Bergstra and Bengio, 2012; Bergstra et al., 2013) or Sequential Model-Based
Global Optimization (SMBO), often referred to as Bayesian optimization (Mockus, 1989;
Jones et al., 1998; Forrester et al., 2008; Brochu et al., 2010; Snoek et al., 2012). Grid-
search is a naive discretization of Problem (6.2). It consists in evaluating the outer
function L on a grid of hyperparameters, solving one inner optimization Problem (6.1)
for each λ in the grid (see Figure 6.1). For each inner problem solution β̂(λ), the
criterion C(β̂(λ)) is evaluated, and the model achieving the lowest value is selected.
Random-search has a similar flavor, but one randomly selects where the criterion must
be evaluated. Finally, SMBO models the objective function L via a function amenable
to uncertainty estimates on its predictions such as a Gaussian process. Hyperparameter
values are chosen iteratively to maximize a function such as the expected improvement
as described, e.g., by Bergstra et al. (2011). However, these zero-order methods share
a common drawback: they scale exponentially with the dimension of the search space
(Nesterov, 2004, Sec. 1.1.2).

1 For a linear model y = Xβ + ε, with ε ∼ N (0, σ2), the degree of freedom (dof, Efron 1986) is
defined as dof(β) =

∑n
i=1 cov(yi, (Xβ)i)/σ

2.
2The smoothed Hinge loss is given by `(x) = 1

2
− x if x ≤ 0, 1

2
(1− x)2 if 0 ≤ x ≤ 1 and 0 else.
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Figure 6.1 – 5-fold cross-validation error C(β(λ)): (top) Lasso CV error with respect
to λ for multiple hyperparameter optimization methods on the real-sim dataset, and
(bottom) elastic net CV error with respect to λ1 and λ2 on the rcv1 dataset. Crosses
represent the 10 (top) or 25 (bottom) first error evaluations for each method.

When the hyperparameter space is continuous and the regularization path λ 7→ β̂(λ) is
well-defined and weakly differentiable, first-order optimization methods are well suited
to solve the bilevel optimization Problem (6.2). Using the chain rule, the gradient of L
with respect to λ, also referred to as the hypergradient, evaluates to

∇λL(λ) = Ĵ >(λ)∇C(β̂(λ)) , (6.3)

with Ĵ (λ) ∈ Rp×r the Jacobian of the function λ 7→ β̂(λ),

Ĵ (λ) ,


∂β̂

(λ)
1

∂λ1
. . .

∂β̂
(λ)
1

∂λr
... . . .

...
∂β̂

(λ)
p

∂λ1
. . .

∂β̂
(λ)
p

∂λr

 . (6.4)

An important challenge of applying first-order methods to solve Problem (6.2) is evalu-
ating the hypergradient in Equation (6.3). There are three main algorithms to compute
the hypergradient ∇λL(λ): implicit differentiation (Larsen et al., 1996; Bengio, 2000)
and automatic differentiation using the reverse-mode (Linnainmaa, 1970; LeCun et al.,
1998) or the forward-mode (Wengert, 1964; Deledalle et al., 2014; Franceschi et al.,
2017). As illustrated in Figure 6.1, once the hypergradient in Equation (6.3) has been
computed, one can solve Problem (6.2) with first-order schemes, e.g., gradient descent.

Contributions. We are interested in tackling the bilevel optimization Problem (6.2),
with a nonsmooth inner optimization Problem (6.1). More precisely,

• We show that classical algorithms used to compute hypergradients for smooth
inner problem have theoretically grounded nonsmooth counterparts. We provide
in Theorem 6.9 an implicit differentiation formula for nonsmooth optimization
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problems. We obtain in Theorem 6.13, for the first time in the nonsmooth case,
error bounds with respect to the hypergradient when the inner problem and the
linear system involved are only solved approximately. We obtain in Theorem 6.12
convergence rates on the hypergradient for iterative differentiation of nonsmooth
optimization problems.

• Based on the former contributions we propose an algorithm to tackle Problem (6.2).
We develop an efficient implicit differentiation algorithm to compute the hyper-
gradient in Equation (6.3), leveraging the sparsity of the Jacobian and enabling
the use of state-of-the-art solvers (Algorithm 6.5). We combine in Algorithm 6.6
this fast hypergradient computation with a gradient descent scheme to solve Prob-
lem (6.2).

• We provide extensive experiments on diverse datasets and estimators (Section 6.4).
We first show that implicit differentiation significantly outperforms other hyper-
gradient methods (Section 6.4.1). Then, leveraging sparsity, we illustrate compu-
tational benefits of first-order optimization with respect to zero-order techniques
for solving Problem (6.2) on Lasso, elastic net and multiclass logistic regression
(Section 6.4.2).

• We release our implementation as a high-quality, documented and tested Python
package: https://github.com/qb3/sparse-ho.

Notation. The regularization parameter, possibly multivariate, is denoted by λ =

(λ1, . . . , λr)
> ∈ Rr. We denote Ĵ (λ) , (∇λβ̂(λ)

1 , . . . ,∇λβ̂(λ)
p )> ∈ Rp×r the weak Jac-

obian (Evans and Gariepy, 1992) of β̂(λ) with respect to λ. For a function f , its gradient
restricted to the indices in a set S is denoted ∇Sf . For a function ψ : Rp × Rr 7→ Rp,
we denote ∂zψ the weak Jacobian with respect to the first variable and ∂λψ the weak
Jacobian with respect to the second variable. The proximal operator of g(·, λ) can be
seen as such a function ψ of β and λ (see Table 6.1 for examples):

Rp × Rr → Rp

(z, λ) 7→ proxg(·,λ)(z) = ψ(z, λ) .

In this case we denote ∂z proxg(·,λ) , ∂zψ and ∂λ proxg(·,λ) , ∂λψ. Since we consider
only separable penalties g(·, λ), ∂z proxg(·,λ) is a diagonal matrix, so to make notation
lighter, we write ∂z proxg(·,λ) for its diagonal. We thus have

∂z proxg(·,λ) = (∂z proxgj(·,λ))j∈[p] ∈ Rp (by separability of g)

∂λ proxg(·,λ) ∈ Rp×r .

Explicit partial derivatives formulas for usual proximal operators can be found in
Table 6.3.

6.2 Bilevel optimization with smooth inner problems

The main challenge to evaluate the hypergradient ∇λL(λ) is the computation of the
Jacobian J (λ). We first focus on the case where Φ(·, λ) is convex and smooth for any
λ.

https://github.com/qb3/sparse-ho
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Table 6.3 – Partial derivatives of proximal operators used.

gj(βj , λ) proxgj(·,λ)(zj) ∂z proxgj(·,λ)(zj) ∂λ proxgj(·,λ)(zj)

eλβ2
j /2 zj/(1 + eλ) 1/(1 + eλ) −zjeλ/(1 + eλ)2

eλ|βj | ST(zj , e
λ) | sign(ST(zj , e

λ))| −eλ sign(ST(zj , e
λ))

eλ1 |βj |+ 1
2e
λ2β2

j
ST(zj ,e

λ1 )

1+eλ2

| sign(ST(zj ,e
λ1 ))|

1+eλ2

(
−eλ1 sign(ST(zj ,e

λ1 ))

1+eλ2
,
−ST(zj ,e

λ1 )eλ2

(1+eλ2 )2

)
ι[0,eλ](βj) max(0,min(zj , e

λ)) 1]0,eλ[(zj) eλ1zj>eλ

Implicit differentiation. We recall how the implicit differentiation3 formula of the
gradient ∇λL(λ) is obtained for smooth inner optimization problems. We will provide
a generalization to nonsmooth optimization problems in Section 6.3.2.

Theorem 6.1 (Bengio 2000). Let β̂(λ) ∈ arg minβ∈Rp Φ(β, λ) be a solution of Prob-
lem (6.1). Assume that for all λ > 0, Φ(·, λ) is a convex smooth function, ∇2

βΦ(β̂(λ), λ) �
0, and that for all β ∈ Rp, Φ(β, ·) is differentiable over ]0,+∞[. Then the hypergradient
∇λL(λ) reads:

∇λL(λ)︸ ︷︷ ︸
∈Rr

= −∇2
β,λΦ(β̂(λ), λ)︸ ︷︷ ︸
∈Rr×p

(
∇2
βΦ(β̂(λ), λ)

)
︸ ︷︷ ︸

∈Rp×p

−1
∇C(β̂(λ))︸ ︷︷ ︸
∈Rp

. (6.5)

Proof For a smooth convex function β 7→ Φ(β, λ) the first-order condition writes:

∇βΦ(β̂(λ), λ) = 0 , (6.6)

for any β̂(λ) solution of the inner problem. Moreover, if λ 7→ ∇βΦ(β̂(λ), λ) is differenti-
able, differentiating Equation (6.6) with respect to λ leads to:

∇2
β,λΦ(β̂(λ), λ) + Ĵ >(λ)∇2

βΦ(β̂(λ), λ) = 0 . (6.7)

The Jacobian Ĵ >(λ) is computed by solving the following linear system:

Ĵ >(λ) = −∇2
β,λΦ(β̂(λ), λ)︸ ︷︷ ︸
∈Rr×p

(
∇2
βΦ(β̂(λ), λ)

)
︸ ︷︷ ︸

∈Rp×p

−1
. (6.8)

Plugging Equation (6.8) into Equation (6.3) yields the desired result.

The computation of the gradient via implicit differentiation (Equation (6.5)) involves
the resolution of a p×p linear system (Bengio, 2000, Sec. 4). This potentially large linear
system can be solved using different algorithms such as conjugate gradient (Hestenes
and Stiefel 1952, as in Pedregosa 2016) or fixed point methods (Lions and Mercier
1979; Tseng and Yun 2009a, as in Grazzi et al. 2020). Implicit differentiation has been
used for model selection of multiple estimators with smooth regularization term: kernel-
based models (Chapelle et al., 2002; Seeger, 2008), weighted Ridge estimator (Foo et al.,
2008), neural networks (Lorraine et al., 2019) or meta-learning (Franceschi et al., 2018;

3Note that implicit refers to the implicit function theorem, but leads to an explicit formula for the
gradient.
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Rajeswaran et al., 2019). In addition to hyperparameter selection, it has been applied
successfully in natural language processing (Bai et al., 2019) and computer vision (Bai
et al., 2020).

Problem (6.1) is typically solved using iterative solvers. In practice, the number of iter-
ations is limited to reduce computation time, and also since very precise solutions are
generally not necessary for machine learning tasks. Thus, Equation (6.6) is not exactly
satisfied at machine precision, and consequently the linear system to solve Equation (6.5)
does not lead to the exact gradient ∇λL(λ), see Ablin et al. (2020) for quantitative con-
vergence results. However, Pedregosa (2016) showed that one can resort to approximate
gradients when the inner problem is smooth, justifying that implicit differentiation can
be applied using an approximation of β̂. Interestingly, this approximation scheme was
shown to yield significant practical speedups when solving Problem (6.2), while pre-
serving theoretical properties of convergence toward the optimum.

Iterative differentiation. Iterative differentiation computes the gradient ∇λL(λ)
by differentiating through the iterates of the algorithm used to solve Problem (6.1).
Iterative differentiation can be applied using the forward-mode (Wengert 1964; Deledalle
et al. 2014; Franceschi et al. 2017) or the reverse-mode (Linnainmaa 1970; LeCun et al.
1998; Domke 2012). Both rely on the chain rule, the gradient being decomposed as
a large product of matrices, computed either in a forward or backward way. Note
that forward and reverse modes are algorithm-dependent: in this section we illustrate
iterative differentiation for proximal gradient descent (PGD, Lions and Mercier 1979;
Combettes and Wajs 2005), using the forward-mode (Algorithm 6.1), and the reverse-
mode (Algorithm 6.2).

The most popular method in automatic differentiation is the reverse-mode, a corner-
stone of deep learning (Goodfellow et al., 2016, Chap. 8). Iterative differentiation for
hyperparameter optimization can be traced back to Domke (2012), who derived (for
smooth loss functions) a reverse-mode with gradient descent, heavy ball and L-BFGS
algorithms. It first computes the solution of the optimization Problem (6.1) using an
iterative solver, but requires storing the iterates along the computation for a backward
evaluation of the hypergradient (Algorithm 6.2). Alternatively, the forward-mode com-
putes jointly the solution along with the gradient ∇λL(λ). It is memory efficient (no
iterates storage) but more computationally expensive when the number of hyperpara-
meters (r) is large; see Baydin et al. (2018) for a survey.

Resolution of the bilevel Problem (6.2). From a theoretical point of view, solv-
ing Problem (6.2) using gradient-based methods is also challenging, and results in the
literature are quite scarce. Kunisch and Pock (2013) studied the convergence of a semi-
Newton algorithm where both the outer and inner problems are smooth. Franceschi
et al. (2018) gave similar results with weaker assumptions to unify hyperparameter
optimization and meta-learning with a bilevel point of view. They required the inner
problem to have a unique solution for all λ > 0 but do not have second-order assump-
tions on Φ. Recent results (Ghadimi and Wang, 2018; Ji et al., 2020; Mehmood and
Ochs, 2021) have provided quantitative convergence toward a global solution of Prob-
lem (6.2), but under global joint convexity assumption and exact knowledge of the
gradient Lipschitz constant.
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Algorithm 6.1 Forward-mode PGD

input : λ ∈ Rr, γ > 0, niter ∈ N, β(0) ∈ Rp,
J (0) ∈ Rp×r

// jointly compute coef. & Jacobian

for k = 1, . . . , niter do
// update the regression coefficients

z(k) = β(k−1) − γ∇f(β(k−1)) // GD step

dz(k) = J (k−1)−γ∇2f(β(k−1))J (k−1)

β(k) = proxγg(·,λ)(z
(k)) // prox. step

// update the Jacobian

J (k) = ∂z proxγg(·,λ)(z
(k))� dz(k)

J (k) += ∂λ proxγg(·,λ)(z
(k)) // O(pr)

v = ∇C(βniter)
return βniter ,J niter> v

Algorithm 6.2 Reverse-mode PGD

input : λ ∈ Rr, γ > 0, niter ∈ N, β(0) ∈ Rp
// computation of β̂

for k = 1, . . . , niter do
z(k)=β(k−1) − γ∇f(β(k−1)) // GD step

β(k) = proxγg(·,λ)

(
z(k)
)

// prox. step

// backward computation of the gradient g

v = ∇C(β(niter)), h = 0Rr

for k = niter, niter − 1, . . . , 1 do
h += v>∂λ proxγg(·,λ)(z

(k)) // O(pr)
v ← ∂z proxγg(·,λ)(z

(k))� v // O(p)
v ← (Id−γ∇2f(β(k)))v // O(np)

return βniter , h

6.3 Bilevel optimization with nonsmooth inner problems

We recalled above how to compute hypergradients when the inner optimization prob-
lem is smooth. In this section we tackle the bilevel optimization Problem (6.2) with
nonsmooth inner optimization Problem (6.1). Handling nonsmooth inner problems
requires specific tools detailed in Section 6.3.1. We then show how to compute gradi-
ents with nonsmooth inner problems using implicit differentiation (Section 6.3.2) or
iterative differentiation (Section 6.3.3). In Section 6.3.4 we tackle the problem of ap-
proximate gradient for a nonsmooth inner optimization problem. Finally, we propose
in Section 6.3.6 an algorithm to solve the bilevel optimization Problem (6.2).

6.3.1 Theoretical framework

Differentiability of the regularization path. Before applying first-order methods
to tackle Problem (6.2), one must ensure that the regularization path λ 7→ β̂(λ) is almost
everywhere differentiable (as in Figure 6.1). This is the case for the Lasso (Mairal and
Yu, 2012) and the SVM (Hastie et al., 2004; Rosset and Zhu, 2007) since solution paths
are piecewise differentiable (see Figure 6.1). Results for nonquadratic data fitting terms
are scarcer: Friedman et al. (2010) address the practical resolution of sparse logistic
regression, but stay evasive regarding the differentiability of the regularization path.
In the general case for problems of the form Problem (6.1), we believe it is an open
question and leave it for future work.

Differentiability of proximal operators. The key point to obtain an implicit dif-
ferentiation formula for nonsmooth inner problems is to differentiate the fixed point
equation of proximal gradient descent. From a theoretical point of view, ensuring this
differentiability at the optimum is non-trivial: Poliquin and Rockafellar (1996b, Thm.
3.8) showed that under a twice epi-differentiability condition the proximal operator is
differentiable at optimum. For the convergence of forward and reverse modes in the
nonsmooth case, one has to ensure that, after enough iterations, the updates of the al-
gorithms become differentiable. Deledalle et al. (2014) justified (weak) differentiability
of proximal operators as they are non-expansive. However this may not be a sufficient
condition, see Bolte and Pauwels (2020a,b). In our case, we show differentiability after
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Figure 6.1 – Regularization paths (coefficient values as a function of λ), on the
diabetes and breast cancer datasets for the Lasso, the elastic net and sparse logistic
regression. This illustrates the weak differentiability of the paths. We used diabetes for
the Lasso and the elastic net, and the 10 first features of breast cancer for the sparse
logistic regression.

support identification of the algorithms: active constraints are identified after a finite
number of iterations by proximal gradient descent (Liang et al., 2014; Vaiter et al.,
2018) and proximal coordinate descent, see Nutini (2018, Sec. 6.2) or Klopfenstein
et al. (2020). Once these constraints have been identified convergence is linear towards
the Jacobian (see Theorem 6.12 and Figures 6.2 to 6.4).

For the rest of this chapter, we consider the bilevel optimization Problem (6.2) with the
following assumptions on the inner Problem (6.1).

Assumption 6.2 (Smoothness). The function f : Rp → R is a convex, differentiable
function, with a L-Lipschitz gradient.

Assumption 6.3 (Proper, closed, convex). For all λ ∈ Rr, for any j ∈ [p], the function
gj(·, λ) : R→ R is proper, closed and convex.

Assumption 6.4 (Non-degeneracy). The problem admits at least one solution:

arg min
β∈Rp

Φ(β, λ) 6= ∅ ,

and, for any β̂ solution of Problem (6.1), we have

−∇f(β̂) ∈ ri
(
∂βg(β̂, λ)

)
.

To be able to extend iterative and implicit differentiation to the nonsmooth case, we
need to introduce the notion of generalized support.

Definition 6.5 (Generalized support, Nutini et al. 2019, Def. 1). For a solution β̂ ∈
arg minβ∈Rp Φ(β, λ), its generalized support Ŝ ⊆ [p] is the set of indices j ∈ [p] such
that gj is differentiable at β̂j:

Ŝ , {j ∈ [p] : ∂βgj(β̂j , λ) is a singleton} .

An iterative algorithm is said to achieve finite support identification if its iterates
β(k) converge to β̂, and there exists K ≥ 0 such that for all j /∈ Ŝ, for all k ≥ K,β(k)

j =

β̂j.
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Examples. For the `1 norm (promoting sparsity), gj(β̂j , λ) = eλ|β̂j |, the generalized
support is Ŝ , {j ∈ [p] : β̂j 6= 0}. This set corresponds to the indices of the non-zero
coefficients, which is the usual support definition. For the SVM estimator, gj(β̂j , λ) =

ι[0,eλ](β̂j). This function is non-differentiable at 0 and at eλ. The generalized support
for the SVM estimator then corresponds to the set of indices such that β̂j ∈]0, eλ[.

Finally, to prove local linear convergence of the Jacobian we assume regularity and
strong convexity on the generalized support.

Assumption 6.6 (Locally C2 and C3). The map β 7→ f(β) is locally C3 around β̂. For
all λ ∈ Rr, for all j ∈ Ŝ the map gj(·, λ) is locally C2 around β̂j.

Assumption 6.7 (Restricted injectivity). Let β̂ be a solution of Problem (6.1) and
Ŝ its generalized support. The solution β̂ satisfies the following restricted injectivity
condition:

∇2
Ŝ,Ŝ
f(β̂) � 0 .

Assumptions 6.2 and 6.3 are classical to ensure inner problems can be solved using
proximal algorithms. Assumption 6.4 can be seen as a generalization of constraint qual-
ifications (Hare and Lewis, 2007, Sec. 1) and is crucial to ensure support identification.
Assumptions 6.6 and 6.7 are classical for the analysis (Liang et al., 2017) and sufficient
to derive rates of convergence for the Jacobian of the inner problem once the generalized
support has been identified.

The next lemma guarantees uniqueness of Problem (6.1) under Assumptions 6.4 and 6.7.

Lemma 6.8 (Liang et al. 2017, Prop. 4.1). Assume that there exists a neighborhood Λ
of λ such that Assumptions 6.4 and 6.7 are satisfied for every λ ∈ Λ. Then for every
λ ∈ Λ, Problem (6.1) has a unique solution, and the map λ 7→ β̂(λ) is well-defined on Λ.

We first show how implicit and iterative differentiation can be used with a nonsmooth
inner problem. Peyré and Fadili (2011) proposed to smooth the inner optimization
problem, Ochs et al. (2015); Frecon et al. (2018) relied on the forward-mode combined
with Bregman iterations to get differentiable steps. For nonsmooth optimization prob-
lems, implicit differentiation has been considered for (constrained) convex optimization
problems (Gould et al., 2016; Amos and Kolter, 2017; Agrawal et al., 2019), Lasso-
type problems (Mairal et al., 2012; Bertrand et al., 2020), total variation penalties
(Cherkaoui et al., 2020), dictionary learning (Malézieux et al., 2021), and generalized
to strongly monotone operators (Winston and Kolter, 2020).

6.3.2 Hypergradient computation: implicit differentiation

The exact proof of Theorem 6.1 cannot be applied when β 7→ Φ(β, λ) is nonsmooth, as
Equations (6.6) and (6.7) no longer hold. Nevertheless, instead of the optimality condi-
tion of smooth optimization, Equation (6.6), one can leverage the fixed point iteration
of proximal gradient descent, which we will see in Equation (6.11). The main theoret-
ical challenge is to show the differentiability of the function β 7→ proxγg(β − γ∇f(β)).
Besides, taking advantage of the generalized sparsity of the regression coefficients β̂(λ),
one can show that the Jacobian Ĵ is row-sparse, leading to substantial computational
benefits when computing the hypergradient ∇λL(λ)) for Problem (6.1),
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Theorem 6.9 (nonsmooth implicit formula). Suppose Assumptions 6.2, 6.3 and 6.6
hold. Let 0 < γ ≤ 1/L, where L is the Lipschitz constant of ∇f . Let λ ∈ Rr, Λ be a
neighborhood of λ, and ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition,

(H1) Suppose Assumptions 6.4 and 6.7 hold on Λ.

(H2) Suppose λ 7→ β̂(λ) is continuously differentiable on Λ.

(H3) Suppose for all z ∈ ΓΛ, λ 7→ proxγg(·,λ)(z) is continuously differentiable on Λ.

(H4) Suppose ∂z proxγg(·,λ) and ∂λ proxγg(·,λ) are Lipschitz continuous on ΓΛ × Λ.

Let β̂ , β̂(λ) be the solution of Problem (6.1), Ŝ its generalized support of cardinality ŝ.
Then the Jacobian Ĵ of the inner Problem (6.1) is given by the following formula,

ẑ = β̂ − γ∇f(β̂), and A , Idŝ−∂z proxγg(·,λ)(ẑ)Ŝ �
(

Idŝ−γ∇2
Ŝ,Ŝ
f(β̂)

)
:

Ĵ Ŝc: = ∂λ proxγg(·,λ)

(
ẑ
)
Ŝc

, (6.9)

Ĵ Ŝ: = A−1

(
∂λ proxγg(·,λ)(ẑ)Ŝ − γ∂z proxγg(·,λ)(ẑ)Ŝ �∇2

Ŝ,Ŝc
f(β̂)Ĵ Ŝc

)
. (6.10)

Proof According to Lemma 6.8, Assumptions 6.4 and 6.7 ensure Problem (6.1) has a
unique minimizer and λ 7→ β̂(λ) is well-defined on Λ. We consider the proximal gradient
descent fixed point equation:

β̂(λ) = proxγg(·,λ)

(
β̂(λ) − γ∇f(β̂(λ))

)
. (6.11)

Together with the conclusion of Lemma 6.8, Assumptions 6.2 and 6.6, and
given (H2), (H3) and (H4), we have that λ 7→ ψ

(
β(λ) − γ∇f(β̂(λ)), λ

)
,

proxγg(·,λ)

(
β̂(λ) − γ∇f(β̂(λ))

)
is differentiable at λ. One can thus differentiate Equa-

tion (6.11) with respect to λ, which leads to:

Ĵ = ∂z proxγg(·,λ)(ẑ)�
(

Id−γ∇2f(β̂)
)
Ĵ + ∂λ proxγg(·,λ)

(
ẑ
)
, (6.12)

with ẑ = β̂ − γ∇f(β̂). In addition to 0 < γ < 1/L ≤ 1/Lj , the separability of g and
Assumptions 6.2 to 6.4 and 6.6 ensure (see Lemma 2.19) that for any j ∈ Ŝc,

∂z proxγgj(·,λ)

(
β̂j − γ∇jf(β̂)

)
= 0 . (6.13)

Plugging Equation (6.13) into Equation (6.12) ensures Equation (6.9) for all j ∈ Ŝc:

Ĵ j: = ∂λ proxγgj(·,λ)

(
β̂j − γ∇jf(β̂)

)
. (6.14)

Plugging Equations (6.13) and (6.14) into Equation (6.12) shows that the Jacobian
restricted on the generalized support Ŝ satisfies the following linear system:(

Idŝ − ∂z proxγg(·,λ)

(
ẑ
)
Ŝ
� (Idŝ − γ∇2

Ŝ,Ŝ
f(β̂))

)
Ĵ Ŝ: =

−γ∂z proxγg(·,λ)(ẑ)Ŝ�∇2
Ŝ,Ŝc

f(β̂)Ĵ Ŝc: + ∂λ proxg(ẑ)Ŝ: .
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Since 0 < γ ≤ 1/L,

‖∂z proxγg(·,λ)(ẑ)Ŝ � (Idŝ−γ∇2
Ŝ,Ŝ
f(β̂))‖2 ≤ ‖∂z proxγg(·,λ)(ẑ)Ŝ‖ · ‖Idŝ−γ∇2

Ŝ,Ŝ
f(β̂)‖2

< 1 . (6.15)

Since Equation (6.15) holds, A , Idŝ−∂z proxγg(·,λ)(ẑ)Ŝ � (Idŝ−γ∇2
Ŝ,Ŝ
f(β̂)) is invert-

ible, which leads to Equation (6.10).

Remark 6.10. In the smooth case a p × p linear system is needed to compute the
Jacobian in Equation (6.8). For nonsmooth problems this is reduced to an ŝ× ŝ linear
system (ŝ ≤ p being the size of the generalized support, e.g., the number of non-zero
coefficients for the Lasso). This leads to significant speedups in practice, especially for
very sparse vector β̂(λ).

Remark 6.11. To obtain Theorem 6.9 we differentiated the fixed point equation of prox-
imal gradient descent, though one could differentiate other fixed point equations (such
as the one from proximal coordinate descent). The value of the Jacobian Ĵ obtained
with different fixed point equations would be the same, yet the associated systems could
have different numerical stability properties. We leave this analysis to future work.

6.3.3 Hypergradient computation: iterative differentiation

Instead of implicit differentiation, it is also possible to use iterative differentiation on
proximal solvers. In section Section 6.2 we presented forward and reverse modes differ-
entiation of proximal gradient descent (Algorithms 6.1 and 6.2). In this section we study
the iterative differentiation of proximal coordinate descent (Algorithms 6.3 and 6.4). To
instantiate algorithms easily on problems such as the Lasso, partial derivatives of usual
proximal operators can be found in Table 6.3.

For coordinate descent, the computation of the iterative Jacobian in a forward way
involves differentiating the following update:

zj ← βj − γj∇jf(β)

βj ← proxγjgj

(
βj − γj∇jf(β)

)
J j: ← ∂z proxγjgj(·,λ)(zj)︸ ︷︷ ︸

∈R

(
J j:−γj∇2

j:f(β)J
)

︸ ︷︷ ︸
∈Rp

+ ∂λ proxγjgj(·,λ)(zj)︸ ︷︷ ︸
∈Rp

.

We address now the convergence of the iterative Jacobian scheme, a question which
remained open in Deledalle et al. (2014, Section 4.1). We show next that the forward-
mode converges to the Jacobian in the nonsmooth separable setting of this chapter.
Moreover, we prove that the iterative Jacobian convergence is locally linear after support
identification.

Theorem 6.12 (Local linear convergence of the Jacobian). Let 0 < γ ≤ 1/L. Sup-
pose Assumptions 6.2, 6.3 and 6.6 hold. Let λ ∈ Rr, Λ be a neighborhood of λ, and
ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition, suppose hypotheses (H1) to (H4) from

Theorem 6.9 are satisfied and the sequence (β(k))k∈N generated by Algorithm 6.1 (re-
spectively by Algorithm 6.3) converges toward β̂.
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Algorithm 6.3 Forward-mode PCD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr,

niter ∈ N, β ∈ Rp
J ∈ Rp×r, γ1, . . . , γp

// jointly compute coef. & Jacobian

for k = 1, . . . , niter do
for j = 1, . . . , p do

// update the regression

coefficients

zj ← βj − γj∇jf(β) // CD step

dzj ← J j:−γj∇2
j:f(β)J

βj ← proxγjgj(·,λ)(zj) // prox. step

// update the Jacobian

// diff. with respect to λ

J j: ← ∂z proxγjgj(·,λ)(zj)dzj
J j: += ∂λ proxγjgj(·,λ)(zj)

β(k) = β
J (k) = J

v = ∇C(β)
return βniter ,J > v

Algorithm 6.4 Reverse-mode PCD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈

N, β ∈ Rp, γ1, . . . , γp > 0
// compute coef.

for k = 1, . . . , niter do
for j = 1, . . . , p do

// update the regression

coefficients

zj ← βj − γj∇jf(β) // CD step

βj ← proxγjgj(·,λ)(zj) // prox. step

β(k,j) = β; z
(k)
j = zj// store iterates

// compute gradient g in a backward way

v = ∇C(βniter), h = 0Rr

for k = niter, niter − 1, . . . , 1 do
for j = p, . . . , 1 do

h −= γjvj∂λ proxγjgj(·,λ)(z
(k)
j )

vj ∗= ∂z proxγjgj(·,λ)(z
(k)
j )

v −= γjvj∇2
j:f(β(k,j)) // O(np)

return βniter , h
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Figure 6.2 – Local linear convergence of the Jacobian for the SVM. Distance to
optimum for the coefficients β (top) and the Jacobian J (bottom) of the forward-mode
differentiation of proximal coordinate descent (Algorithm 6.3) on multiple datasets. One
epoch corresponds to one pass over the data, i.e., one iteration with proximal gradient
descent.

Then, the sequence of Jacobians (J (k))k≥0 generated by the forward-mode differentiation
of proximal gradient descent (Algorithm 6.1) (respectively by forward-mode differenti-
ation of proximal coordinate descent, Algorithm 6.3) converges locally linearly towards
Ĵ .

Proof of Theorem 6.12 can be found in Section 6.A.1.

Figures 6.3 and 6.4 are the counterparts of Figure 6.2 for the Lasso and sparse logistic
regression. It shows the local linear convergence of the Jacobian for the Lasso, obtained
by the forward-mode differentiation of coordinate descent. The solvers used to determine
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Figure 6.3 – Local linear convergence of the Jacobian for the Lasso. Distance to
optimum for the coefficients β (top) and the Jacobian J (bottom) of the forward-mode
differentiation of proximal coordinate descent (Algorithm 6.3) on multiple datasets.
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Figure 6.4 – Local linear convergence of the Jacobian for sparse logistic regres-
sion. Distance to optimum for the coefficients β (top) and the Jacobian J (bottom)
of the forward-mode differentiation of proximal coordinate descent (Algorithm 6.3) on
multiple datasets.

the exact solution up to machine precision are Celer (Massias et al., 2018b, 2020b) for
the Lasso and Blitz (Johnson and Guestrin, 2015) for the sparse logistic regression.
Table 6.1 summarizes the values of the hyperparameters λ used in Figures 6.2 to 6.4.

Comments on Figure 6.2. We illustrate the results of Theorem 6.12 on SVM (for
the Lasso and sparse logistic regression, see Figures 6.3 and 6.4) for multiple data-
sets (leukemia, rcv1, news20 and real-sim4). The values of the hyperparameters λ are
summarized in Table 6.1. Regression coefficients β̂(λ) were computed to machine preci-
sion (up to duality gap smaller than 10−16) using a state-of-the-art coordinate descent
solver implemented in Lightning (Blondel and Pedregosa, 2016). The exact Jacobian
was computed via implicit differentiation (Equation (6.10)). Once these quantities
were obtained, we used the forward-mode differentiation of proximal coordinate des-
cent (Algorithm 6.3) and monitored the distance between the iterates of the regression
coefficients β(k) and the exact solution β̂. We also monitored the distance between the

4Data available on the libsvm website: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 6.1 – Dataset characteristics and regularization parameters used in Figures 6.2
to 6.4.

Datasets leukemia rcv1 news20 real-sim
# samples n = 38 n = 20 242 n = 19 996 n = 72 309
# features p = 7129 p = 19 959 p = 632 982 p = 20 958

Lasso eλ = 0.01 eλmax eλ = 0.075 eλmax eλ = 0.3 eλmax eλ = 0.1 eλmax

Logistic regression eλ = 0.1 eλmax eλ = 0.25 eλmax eλ = 0.8 eλmax eλ = 0.15 eλmax

SVM eλ = 10−5 eλ = 3× 10−2 eλ = 10−3 eλ = 5× 10−2

iterates of the Jacobian J (k) and the exact Jacobian Ĵ . The red vertical dashed line
represents the iteration number where support identification happens. Once the sup-
port is identified, Figures 6.2 to 6.4 illustrate the linear convergence of the Jacobian.
However, the behavior of the iterative Jacobian before support identification is more
erratic and not even monotone.

6.3.4 Hypergradient computation with approximate gradients

As mentioned in Section 6.2, relying on iterative algorithms to solve Problem (6.1),
one only has access to an approximation of β̂(λ): this may lead to numerical errors
when computing the gradient in Theorem 6.9. Extending the result of Pedregosa (2016,
Thm. 1), which states that hypergradients can be computed approximately, we give
a stability result for the computation of approximate hypergradients in the case of
nonsmooth inner problems. For this purpose we need to add several assumptions to the
previous framework.

Theorem 6.13 (Bound on the error of approximate hypergradient). For λ ∈ Rr,
let β̂(λ) ∈ Rp be the exact solution of the inner Problem (6.1), and Ŝ its generalized
support. Suppose Assumptions 6.2, 6.3 and 6.6 hold. Let Λ be a neighborhood of λ, and
ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. Suppose hypotheses (H1) to (H4) from Theorem 6.9

are satisfied. In addition suppose

(H5) The application β 7→ ∇2f(β) is Lipschitz continuous.

(H6) The criterion β 7→ ∇C(β) is Lipschitz continuous.

(H7) Both optimization problems in Algorithm 6.5 are solved up to precision ε with sup-
port identification: ‖β(λ) − β̂(λ)‖ ≤ ε, A> is invertible, and ‖A−1>∇ŜC(β(λ))− v‖ ≤
ε.

Then the error on the approximate hypergradient h returned by Algorithm 6.5 is of the
order of magnitude of the error ε on β(λ) and v:

‖∇L(λ)− h‖ = O(ε) .

Proof of Theorem 6.13 can be found in Section 6.B. Following the analysis of Pedregosa
(2016), two sources of approximation errors arise when computing the hypergradient:
one from the inexact computation of β̂, and another from the approximate resolu-
tion of the linear system. Theorem 6.13 states that if the inner optimization prob-
lem and the linear system are solved up to precision ε, i.e., ‖β̂(λ) − β(λ)‖ ≤ ε and
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‖A−1>∇SC(β(λ))− v‖ ≤ ε, then the approximation on the hypergradient is also of the
order of ε.

Remark 6.14. The Lipschitz continuity of the proximity operator with respect to λ (H4)
is satisfied for usual proximal operators, in particular all the operators in Table 6.3. The
Lipschitz continuity of the Hessian and the criterion, hypotheses (H5) and (H6), are
satisfied for usual machine learning loss functions and criteria, such as the least squares
and the logistic loss.

Remark 6.15. To simplify the analysis, we used the same tolerance for the resolution
of the inner Problem (6.1) and the resolution of the linear system. Theorem 6.13 gives
intuition on the fact that the inner problem does not need to be solved at high precision
to lead to good hypergradients estimation. Note that in practice one does not easily
control the distance between the approximate solution and the exact one ‖β(k) − β̂‖: most
softwares provide a solution up to a given duality gap (sometimes even other criteria),
not ‖β(k) − β̂‖.

6.3.5 Proposed method for hypergradient computation

We now describe our proposed method to compute the hypergradient of Problem (6.2).
In order to take advantage of the sparsity induced by the generalized support, we pro-
pose an implicit differentiation algorithm for nonsmooth inner problem that can be
found in Algorithm 6.5. First, we compute a solution of the inner Problem (6.1) using a
solver identifying the generalized support (Liang et al., 2014; Klopfenstein et al., 2020).
Then, the hypergradient is computed by solving the linear system in Equation (6.10).
This linear system, as mentioned in Section 6.2, can be solved using multiple algorithms,
including conjugate gradient or fixed point methods. Table 6.2 summarizes the compu-
tational complexity in space and time of the described algorithms.

Table 6.2 – Cost in time and space for each method: p is the number of features, n the
number of samples, r the number of hyperparameters, and ŝ is the size of the generalized
support (Definition 6.5, ŝ ≤ p and usually ŝ� p). The number of iterations of the inner
solver is noted niter, the number of iterations of the solver of the linear system is noted
nsys.

Differentiation Algorithm Space Time

Forward-mode PGD Algorithm 6.1 O(p r) O(n p r niter)
Reverse-mode PGD Algorithm 6.2 O(p niter) O(n pniter + n pniter)
Forward-mode PCD Algorithm 6.3 O(p r) O(n p r niter)
Reverse-mode PCD Algorithm 6.4 O(p niter) O(n pniter + n p2 niter)
Implicit differentiation Algorithm 6.5 O(p+ ŝ) O(n pniter + n ŝ nsys)

6.3.6 Resolution of the bilevel optimization Problem (6.2)

From a practical point of view, once the hypergradient has been computed, first-order
methods require the definition of a step size to solve the non-convex Problem (6.2). As
the Lipschitz constant is not available for the outer problem, first-order methods need
to rely on other strategies, such as:
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• Gradient descent with manually adjusted fixed step sizes (Frecon et al., 2018; Ji
et al., 2020). The main disadvantage of this technique is that it requires a careful
tuning of the step size for each experiment. In addition to being potentially
tedious, it does not lead to an automatic procedure.

• L-BFGS (as in Deledalle et al. 2014). L-BFGS is a quasi-Newton algorithm that
exploits past iterates to approximate the Hessian and propose a better descent
direction, which is combined with some line search (Nocedal and Wright, 2006).
Yet, due to the approximate gradient computation, we observed that L-BFGS did
not always converge.

• ADAM (Kingma and Ba, 2014). It turned out to be inappropriate to the present
setting. ADAM was very sensitive to the initial step size and required a careful
tuning for each experiment.

• Iteration specific step sizes obtained by line search (Pedregosa, 2016). While the
approach from Pedregosa (2016) requires no tuning, we observed that it could
diverge when close to the optimum. The adaptive step size strategy proposed in
Algorithm 6.6, used in all the experiments, turned out to be robust and efficient
across problems and datasets.

Remark 6.16 (Uniqueness). The solution of Problem (6.1) may be non-unique, leading
to a multi-valued regularization path λ 7→ β̂(λ) (Liu et al., 2020) and requiring tools such
as optimistic gradient (Dempe et al., 2015, Chap. 3.8). Though it is not possible to
ensure uniqueness in practice, we did not face experimental issues due to potential non-
uniqueness. For the Lasso, this experimental observation can be theoretically justified
(Tibshirani, 2013): when the design matrix is sampled from a continuous distribution,
the solution of the Lasso is almost surely unique.

Remark 6.17 (Initialization). One advantage of the nonsmooth case with the `1 norm
is that one can find a good initialization point: there exists a value λmax (see Table 6.1)
such that the solution of Problem (6.1) vanishes for λ ≥ λmax. Hence, a convenient and
robust initialization value can be chosen as eλ = eλmax/100. This is in contrast with the
smooth case, where finding a good initialization heuristic is hard: starting in flat zones
can lead to poor performance for gradient-based methods (Pedregosa, 2016).

6.4 Experiments

In this section, we illustrate the benefits of our proposed Algorithm 6.5 to compute
hypergradients and Algorithm 6.6 to solve Problem (6.2). Our package, sparse-ho, is
implemented in Python. It relies on Numpy (Harris et al., 2020), Numba (Lam et al., 2015)
and SciPy (Virtanen et al., 2020). Figures were plotted using matplotlib (Hunter,
2007). The package is available under BSD3 license at https://github.com/qb3/
sparse-ho, with documentation and examples available at https://qb3.github.io/
sparse-ho/. Online code includes scripts to reproduce all figures and experiments of
the chapter.

6.4.1 Hypergradient computation

Comparison with alternative approaches (Figure 6.1). First, we compare dif-
ferent methods to compute the hypergradient:

https://github.com/qb3/sparse-ho
https://github.com/qb3/sparse-ho
https://qb3.github.io/sparse-ho/
https://qb3.github.io/sparse-ho/
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Algorithm 6.5 Implicit differenti-
ation
input : λ ∈ R, ε > 0
init : γ > 0
// compute the solution of inner problem

Find β such that: Φ(β, λ)− Φ(β̂, λ) ≤ ε
// compute the gradient

Compute the generalized support S of β,
z = β − γ∇f(β)
J Sc: = ∂λ proxγg(·,λ)(z)Sc

s = |S|
A = Ids−∂z proxγg(·,λ)(z)S �
(Ids−γ∇2

S,Sf(β))

Find v ∈ Rs s.t. ‖A−1>∇SC(β)− v‖ ≤ ε
B = ∂λ proxγg(·,λ)(z)S
− γ∂z proxγg(·,λ)(z)S �∇2

S,Scf(β)J Sc
∇L(λ) = J >Sc:∇ScC(β) + v>B
return L(λ) , C(β),∇L(λ)

Algorithm 6.6 Gradient descent
with approximate gradient
input : λ ∈ Rr, (εi)
init : use_adaptive_step_size = True
for i = 1, . . . , iter do

λold ← λ
// compute the value and the

gradient L(λ),∇L(λ)←
Algorithm 6.5(X, y, λ, εi)
if use_adaptive_step_size then

α = 1/‖∇L(λ)‖
λ −= α∇L(λ) // gradient step

if L(λ) > L(λold) then
use_adaptive_step_size = False
α /= 10

return λ

Table 6.1 – Characteristics of the datasets used for the experiments.

name # samples n # features p # classes q density
breast cancer 569 30 − 1

diabetes 442 10 − 1
leukemia 72 7129 − 1

gina agnostic 3468 970 − 1
rcv1 20 242 19 960 − 3.7× 10−3

real-sim 72 309 20 958 − 2.4× 10−3

news20 19 996 632 983 − 6.1× 10−4

mnist 60.000 683 10 2.2× 10−1

usps 7291 256 10 1
rcv1 (multiclass) 15 564 16 245 53 4.0× 10−3

aloi 108 000 128 1000 2.4× 10−1

• Forward-mode differentiation of proximal coordinate descent (Algorithm 6.3).

• Reverse-mode differentiation of proximal coordinate descent (Algorithm 6.4).

• cvxpylayers (Agrawal et al., 2019), a software based on cvxpy (Diamond and
Boyd, 2016), solving disciplined parametrized programming and providing deriv-
atives with respect to the parameters of the program. It is thus possible to use
cvxpylayers to compute gradients with respect to the regularization parameters.

Figure 6.1 compares the time taken by multiple methods to compute a single hyper-
gradient ∇L(λ) for the Lasso (see Table 6.1), for multiple values of λ. It shows the
time taken to compute the regression coefficients and the hypergradient, as a function
of the number of columns, sampled from the design matrix from the gina dataset. The
columns were selected at random and 10 repetitions were performed for each point of
the curves. In order to aim for good numerical precision, problems were solved up to a
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Figure 6.1 – Lasso with hold-out criterion: time comparison on the gina dataset to
compute a single hypergradient as a function of the number of features, for two values
of λ, eλ = eλmax/10 (left) and eλ = eλmax/100 (right).

duality gap of 10−6 for the forward-mode and the reverse-mode. cvxpylayers relies on
cvxpy, solving Problem (6.1) using a splitting conic solver (O’Donoghue et al., 2019).
Since the termination criterion of the splitting conic solver is not exactly the duality
gap (O’Donoghue et al., 2016, Sec. 3.5), we used the default tolerance of 10−4. The
hypergradient ∇L(λ) was computed for hold-out mean squared error (see Table 6.2).

The forward-mode differentiation of proximal coordinate descent is one order of mag-
nitude faster than cvxpylayers and two orders of magnitude faster than the reverse-
mode differentiation of proximal coordinate descent. The larger the value of λ, the
sparser the coefficients β are, leading to significant speedups in this regime. This per-
formance is in accordance with the lower time cost of the forward mode in Table 6.2.

Combining implicit differentiation with state-of-the art solvers (Figures 6.2
and 6.3). We now compare the different approaches described in Section 6.3:

• Forward-mode differentiation of proximal coordinate descent (Algorithm 6.3).

• Implicit differentiation (Algorithm 6.5) with proximal coordinate descent to solve
the inner problem. For efficiency, this solver was coded in Numba (Lam et al.,
2015).

• Implicit differentiation (Algorithm 6.5) with state-of-the-art algorithm to solve
the inner problem: we used Celer (Massias et al., 2020b) for the Lasso, and
Lightning (Blondel and Pedregosa, 2016) for the SVM.

Figure 6.2 shows for three datasets and two values of regularization parameters the
absolute difference between the exact hypergradient and the approximate hypergradient
obtained via multiple algorithms as a function of time. Figure 6.3 reports similar results
for the SVM, on the same datasets, except news20, which is not well suited for SVM,
due to limited number of samples.

First, it demonstrates that implicit differentiation methods are faster than the forward-
mode of proximal coordinate descent (pink). This illustrates the benefits of restricting
the gradient computation to the support of the Jacobian, as described in Section 6.3.5.
Second, thanks to the flexibility of our approach, we obtain additional speed-ups by
combining implicit differentiation with a state-of-the-art solver, Celer. The resulting
method (orange) significantly improves over implicit differentiation using a vanilla prox-
imal coordinate descent (green).
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Figure 6.2 – Lasso with hold-out criterion: absolute difference between the exact
hypergradient (using β̂) and the iterate hypergradient (using β(k)) of the Lasso as a
function of time. Results are for three datasets and two different regularization para-
meters. “Implicit diff. + Celer)” uses Celer (Massias et al., 2020b) instead of our
proximal coordinate descent implementation.
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Figure 6.3 – SVM with hold-out criterion: absolute difference between the exact
hypergradient (using β̂) and the iterate hypergradient (using β(k)) of the SVM as a
function of time. “Implicit diff. + Lightning” uses Lightning (Blondel and Pedregosa,
2016), instead of our proximal coordinate descent implementation.

6.4.2 Resolution of the bilevel optimization problem

In this section we compare multiple methods to find the optimal hyperparameters for
the Lasso, elastic net and multiclass sparse logistic regression. The following methods
are compared:

• Grid-search: for the Lasso and the elastic net, the number of hyperparameters
is small, and grid-search is tractable. For the Lasso we chose a grid of 100 hyper-
parameters λ, uniformly spaced between λmax− ln(104) and λmax. For the elastic
net we chose for each of the two hyperparameters a grid of 10 values uniformly
spaced between λmax and λmax − ln(104). The product grid thus has 102 points.
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• Random-search: we chose 30 values of λ sampled uniformly between λmax and
λmax − ln(104) for each hyperparameter. For the elastic net we chose 30 points
sampled uniformly in [λmax − ln(104), λmax]× [λmax − ln(104), λmax].
• SMBO: this algorithm is SMBO using as criterion expected improvement (EI)

and the Tree-structured Parzen Estimator (TPE) as model. First it evaluates L
using 5 values of λ, chosen uniformly at random between λmax and λmax− ln(104).
Then a TPE model is fitted on the data points (λ(1),L(λ(1))), . . . , (λ(5),L(λ(5))).
Iteratively, the EI is used to choose the next point to evaluate L at, and this value
is used to update the model. We used the hyperopt implementation (Bergstra
et al., 2013).
• 1st order: first-order method with exact gradient (Algorithm 6.6 with constant

tolerances εi = 10−6), with λmax − ln(102) as a starting point.
• 1st order approx: a first-order method using approximate gradient (Algorithm 6.6

with tolerances εi, geometrically decreasing from 10−2 to 10−6), with λmax −
ln(102) as a starting point.

Outer criterion. In the Lasso and elastic net experiments, we pick a K-fold CV loss
as outer criterion5. Hence, the dataset (X, y) is partitioned into K hold-out datasets
(Xtraink , ytraink), (Xvalk , yvalk). The bilevel optimization problems then write:

arg min
λ=(λ1,λ2)∈R2

L(λ) =
1

K

K∑
k=1

‖yvalk −Xvalk β̂(λ,k)‖22

s.t. β̂(λ,k) ∈ arg min
β∈Rp

1
2n

∥∥∥ytraink −Xtrainkβ
∥∥∥2

2
+ eλ1‖β‖1 +

eλ2

2
‖β‖22, ∀k ∈ [K] ,

(6.16)
while Lasso CV is obtained taking λ2 → −∞ in the former. By considering an extended
variable β ∈ RK×p, cross-validation can be cast as an instance of Problem (6.2).

Figure 6.4 represents the cross-validation loss in Lasso CV as a function of the regular-
ization parameter λ (black curve, three top rows) and as a function of time (bottom).
Each point corresponds to the evaluation of the cross-validation criterion for one λ
value. The top rows show cross-validation loss as a function of λ, for the grid-search,
the SMBO optimizer and the first-order method. The lightest crosses correspond to the
first iterations of the algorithm and the darkest, to the last ones. For instance, Lasso
grid-search starts to evaluate the cross-validation function with λ = λmax and then
decreases to λ = λmax − ln(104). On all the datasets, first-order methods are faster to
find the optimal regularization parameter, requiring only 5 iterations.

Figure 6.5 represents the level sets of the cross-validation loss for the elastic net (three
top rows) and the cross-validation loss as a function of time (bottom). One can see that
after 5 iterations the SMBO algorithm (blue crosses) suddenly slows down (bottom) as
the hyperparameter suggested by the algorithm leads to a costly optimization problem to
solve, while first-order methods converge quickly as for Lasso CV. In the present context,
inner problems are slower to solve for low values of the regularization parameters.

Multiclass sparse logistic regression (# classes hyperparameters, Figure 6.6).
We consider a multiclass classification problem with q classes. The design matrix is
noted X ∈ Rn×p, and the target variable y ∈ {1, . . . , q}n. We chose to use a one-versus-

5In our experiments the default choice is K = 5.
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Figure 6.4 – Lasso with cross-validation criterion: cross-validation loss as a func-
tion of λ (black line, top) and as a function of time (bottom). Lighter markers corres-
pond to earlier iterations of the algorithm.

all model with q regularization parameters. We use a binary cross-entropy for the inner
loss:

ψk(β, λk;X, y) , − 1

n

n∑
i=1

(
1yi=k ln(σ(Xi:β)) + (1− 1yi=k) ln(1− σ(Xi:β))

)
+ eλk‖β‖1 ,

and a multiclass cross-entropy for the outer criterion:

C
(
β̂(λ1), . . . , β̂(λq);X, y

)
, −

n∑
i=1

q∑
k=1

ln

 eXi:β̂
(λk)∑q

l=1 e
Xi:β̂

(λl)

1yi=k . (6.17)

With a single train/test split, the bilevel problem to solve writes:

arg min
λ,(λ1,...,λq)∈Rq

C
(
β̂(λ1), . . . , β̂(λq);Xtest, ytest

)
s.t. β̂(λk) ∈ arg min

β∈Rp
ψk(β, λk;X

train, ytrain) ∀k ∈ [q] .
(6.18)

Figure 6.6 represents the multiclass cross-entropy (top), the accuracy on the validation
set (middle) and the accuracy on the test set (unseen data, bottom). When the number
of hyperparameter is moderate (q = 10, onmnist and usps), the multiclass cross-entropy
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Figure 6.5 – Elastic net cross-validation, time comparison (2 hyperparamet-
ers). Level sets of the cross-validation loss (black lines, top) and cross-validation loss
as a function of time (bottom) on rcv1, real-sim and news20 datasets.

reached by SMBO and random techniques is as good as first-order techniques. This is
expected and follows the same conclusion as Bergstra and Bengio (2012); Frazier (2018):
when the number of hyperparameters is moderate, SMBO and random techniques can
be used efficiently. However, when the number of hyperparameters increases (rcv1,
q = 53 and aloi, q = 1000), the hyperparameter space is too large: zero-order solvers
simply fail. On the contrary, first-order techniques manage to find hyperparameters
leading to significantly better accuracy.



156 CHAPTER 6. HYPERPARAMETER OPTIMIZATION

Random-search SMBO 1st-order

0 200 400

0.6

0.8

1.0

1.2

M
ul

ti
cl

as
s

cr
os

s-
en

tr
op

y mnist (q=10)

0 500 1000

0.4

0.6

0.8

1.0

usps (q=10)

0 500 1000
0.5

1.0

1.5

rcv1 (q=53)

0 1000 2000

6

7

8

aloi (q=1000)

0 200 400

0.75

0.80

0.85

A
cc

ur
ac

y
va

lid
at

io
n

se
t

0 500 1000

0.75

0.80

0.85

0.90

0 500 1000

0.6

0.7

0.8

0 1000 2000

0.0

0.1

0.2

0.3

0 200 400

Time (s)

0.75

0.80

0.85

0.90

A
cc

ur
ac

y
te

st
se

t

0 500 1000

Time (s)

0.80

0.85

0.90

0.95

0 500 1000

Time (s)

0.6

0.7

0.8

0.9

0 1000 2000

Time (s)

0.0

0.2

0.4

Figure 6.6 –Multiclass sparse logistic regression hold-out, time comparison (#
classes hyperparameters). Multiclass cross-entropy (top), accuracy on the validation
set (middle), and accuracy on the test set (bottom) as a function of time on mnist, usps
(q = 10 classes), rcv1 (q = 53 classes), aloi (q = 1000 classes).

6.5 Conclusion

In this work we considered the problem of hyperparameter optimization to select the reg-
ularization parameter of linear models with nonsmooth objective. Casting this problem
as a bilevel optimization problem, we proposed to use first-order methods. We showed
that the usual automatic differentiation techniques, implicit differentiation, forward and
reverse modes, can be used to compute the hypergradient, despite the non-smoothness
of the inner problem. Experimentally, we showed the interest of first-order techniques
to solve bilevel optimization on a wide range of estimators (`1 penalized methods, SVM,
etc.) and datasets. The presented techniques could also be extended to other criteria
(Lounici et al., 2021) or to more general bilevel optimization problems, in particular im-
plicit differentiation could be well suited for meta-learning problems, with a potentially
large number of hyperparameters (Franceschi et al., 2018).



Appendix

6.A Proof of the local linear convergence

6.A.1 Local linear convergence

We now detail the following result: an asymptotic vector autoregressive sequence, with
an error term vanishing linearly to 0, converges linearly to its limit. In a more formal
way:

Lemma 6.18. Let A ∈ Rp×p, b ∈ R with ρ(A) < 1. Let (J (k))k∈N be a sequence of Rp
such that:

J (k+1) = AJ (k) +b+ ε(k) , (6.19)

with (ε(k))k∈N a sequence which converges linearly to 0, then (J (k))k∈N converges linearly
to its limit Ĵ , (Id−A)−1b.

Proof Assume (ε(k))k∈N converges linearly. Then, there exists c1 > 0, 0 < ν < 1 such
that:

‖ε(k)‖ ≤ c1ν
k .

Applying a standard result on spectral norms (see Polyak 1987, Chapter 2, Lemma 1)
yields a bound on ‖Ak‖2. More precisely, for every δ > 0 there is a constant c2(δ) = c2

such that

‖Ak‖2 ≤ c2(ρ(A) + δ)k .

Without loss of generality, we consider from now on a choice of δ such that ρ(A)+δ < 1.
Since Ĵ = (Id−A)−1b the limit Ĵ of the sequence satisfies:

Ĵ = AĴ + b . (6.20)

Taking the difference between Equations (6.19) and (6.20) yields:

J (k+1)−Ĵ = A(J (k)−Ĵ ) + ε(k) . (6.21)

Unrolling Equation (6.21) yields J (k+1)−Ĵ = Ak+1(J (0)−J )+
∑k

k′=0A
k′ε(k−k

′). Tak-
ing the norm on both sides and using the triangle inequality leads to

‖J (k+1)−Ĵ ‖2 ≤ ‖Ak+1(J (0)−J )‖2 +

k∑
k′=0

‖Ak′‖2‖ε(k−k
′)‖

≤ ‖Ak+1‖2 · ‖J (0)−Ĵ ‖2 + c1

k∑
k′=0

‖Ak′‖2 · νk−k
′

≤ c2(ρ(A) + δ)k+1 · ‖J (0)−Ĵ ‖2 + c1

k∑
k′=0

c2(ρ(A) + δ)k
′
νk−k

′
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We can now split the last summand in two parts and obtain the following bound,
reminding that ρ(A) + δ < 1:

‖J (k+1)−Ĵ ‖2 ≤ c2(ρ(A) + δ)k+1 · ‖J (0)−Ĵ ‖2

+ c1c2

 k/2∑
k′=0

(ρ(A) + δ)k
′
νk−k

′
+

k∑
k′=k/2

(ρ(A) + δ)k
′
νk−k

′


≤ c2(ρ(A) + δ)k+1 · ‖J (0)−Ĵ ‖2 +

c1c2(ρ(A) + δ)

1− ρ(A)− δ
√
ν
k

+
c1c2ν

1− ν
√

(ρ(A) + δ)
k
.

Thus, (J (k))k∈N converges linearly towards its limit Ĵ .

Theorem 6.12 (Local linear convergence of the Jacobian). Let 0 < γ ≤ 1/L. Sup-
pose Assumptions 6.2, 6.3 and 6.6 hold. Let λ ∈ Rr, Λ be a neighborhood of λ, and
ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition, suppose hypotheses (H1) to (H4) from

Theorem 6.9 are satisfied and the sequence (β(k))k∈N generated by Algorithm 6.1 (re-
spectively by Algorithm 6.3) converges toward β̂.

Then, the sequence of Jacobians (J (k))k≥0 generated by the forward-mode differentiation
of proximal gradient descent (Algorithm 6.1) (respectively by forward-mode differenti-
ation of proximal coordinate descent, Algorithm 6.3) converges locally linearly towards
Ĵ .

Proof We first prove Theorem 6.12 for proximal gradient descent.

Proximal gradient descent case. Solving Problem (6.1) with proximal gradient
descent leads to the following updates:

β(k+1) = proxγg(·,λ)(β
(k) − γ∇f(β(k))︸ ︷︷ ︸

z(k)

) . (6.22)

Consider the following sequence (J (k))k∈N defined by:

J (k+1) = ∂z proxγg(·,λ)(z
(k))�

(
Id−γ∇2f(β(k))

)
J (k) +∂λ proxγg(·,λ)(z

(k)) . (6.23)

Note that if proxγg(·,λ) is not differentiable with respect to the first variable at z(k)

(respectively with respect to the second variable λ), any weak Jacobian can be used.
When (H3) holds, differentiating Equation (6.22) with respect to λ yields exactly Equa-
tion (6.23).

Assumptions 6.2 to 6.4 and 6.6 and the convergence of (β(k)) toward β̂ ensure prox-
imal gradient descent algorithm has finite identification property (Liang et al., 2014,
Thm. 3.1): we note K the iteration when identification is achieved. As before, the
separability of g, Assumptions 6.2 to 6.4 and 6.6 ensure (see Theorems 2.13 and 2.19)
∂z proxγg(·,λ)(z

k)Ŝc = 0, for all k ≥ K. Thus, for all k ≥ K,

J (k)

Ŝc:
= Ĵ Ŝc: = ∂λ proxγg(·,λ)(z

(k))Ŝc: .
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The updates of the Jacobian then become:

J (k+1)

Ŝ:
= ∂z proxγg(·,λ)(z

(k))Ŝ �
(

Id−γ∇2
Ŝ,Ŝ
f(β(k))

)
J (k)

Ŝ:
+∂λ proxγg(·,λ)(z

(k))Ŝ: .

From Assumption 6.6, we have that f is locally C3 at β̂, g(·, λ) is locally C2 at β̂ hence
proxg(·,λ) is locally C2. The function β 7→ ∂z proxγg(·,λ)(β−γ∇f(β))Ŝ�(Id−γ∇2

Ŝ,Ŝ
f(β))

is differentiable at β̂. Using (H4) we have that β 7→ ∂λ proxγg(·,λ)(β− γ∇f(β))Ŝ: is also
differentiable at β̂. Using the Taylor expansion of the previous functions yields:

J (k+1)

Ŝ:
= ∂z proxγg(·,λ)(ẑ)Ŝ �

(
Id−γ∇2

Ŝ,Ŝ
f(β̂)

)
︸ ︷︷ ︸

A

J (k)

Ŝ:
+ ∂λ proxγg(·,λ)(ẑ)Ŝ:︸ ︷︷ ︸

b

+ o(‖β(k) − β̂‖)︸ ︷︷ ︸
ε(k)

.

(6.24)

Thus, for 0 < γ ≤ 1/L,

ρ(A) ≤ ‖A‖2 ≤ ‖∂z proxγg(·,λ)(ẑ)Ŝ‖︸ ︷︷ ︸
≤1 (non-expansiveness)

· ‖Id−γ∇2
Ŝ,Ŝ
f(β̂)‖2︸ ︷︷ ︸

<1 (Assumption 6.7 and 0 < γ ≤ 1/L)

< 1 . (6.25)

The inequality on the derivative of the proximal operator comes from the non-expansiveness
of proximal operators. The second inequality comes from Assumption 6.7 and 0 < γ ≤
1/L.

Assumptions 6.2 to 6.4, 6.6 and 6.7 and the convergence of (β(k)) toward β̂ ensure
(β(k))k∈N converges locally linearly (Liang et al., 2014, Thm. 3.1). The asymptotic
autoregressive sequence in Equation (6.24), ρ(A) < 1, and the local linear convergence
of (ε(k))k∈N, yield our result using Lemma 6.18.

We now prove Theorem 6.12 for proximal coordinate descent.

Proximal coordinate descent. Compared to proximal gradient descent, the analysis
of coordinate descent requires studying functions defined as a the composition of p
applications, each of them only modifying one coordinate.

Coordinate descent updates read as follows:

β
(k,j)
j = proxγjgj(·,λ)

(
β

(k,j−1)
j − γj∇jf(β(k,j−1))

)
︸ ︷︷ ︸

,z(k,j−1)
j

. (6.26)

We consider the following sequence:

J (k,j)
j: = ∂z proxγjgj(·,λ)(z

(k,j−1)
j )

(
J (k,j−1)
j: −γj∇2

j:f(β(k,j−1))J (k,j−1)

)
+ ∂λ proxγjgj(·,λ)(z

(k,j−1)
j ) . (6.27)

Note that if proxγg(·,λ) is not differentiable with respect to the first variable at z(k)

(respectively with respect to the second variable λ), any weak Jacobian can be used.
When (H3) holds, differentiating Equation (6.26) with respect to λ yields exactly Equa-
tion (6.27).
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Assumptions 6.2 to 6.4 and 6.6 and the convergence of (β(k))k∈N toward β̂ ensure prox-
imal coordinate descent has finite identification property (Klopfenstein et al., 2020,
Thm. 1): we note K the iteration when identification is achieved. Once the generalized
support Ŝ (of cardinality ŝ) has been identified, we have that for all k ≥ K, β(k)

Ŝc
= β̂Ŝ

and for any j ∈ Ŝc, ∂z proxγjgj(·,λ)(z
(k,j−1)
j ) = 0. Thus J (k,j)

j: = ∂λ proxγjgj(·,λ)(z
(k,j−1)
j ).

Then, we have that for any j ∈ Ŝ and for all k ≥ K:

J (k,j)
j: = ∂z proxγjgj(·,λ)(z

(k,j−1)
j )

(
J (k,j−1)
j: −γj∇2

j,Ŝ
f(β(k,j−1))J (k,j−1)

Ŝ:

)
+ ∂λ proxγjgj(·,λ)(z

(k,j−1)
j )− γj∂z proxγjgj(·,λ)(z

(k,j−1)
j )∇2

j,Ŝc
f(β(k,j−1))J (k,j−1)

Ŝc:
.

Let e1, . . . , eŝ be the vectors of the canonical basis of Rŝ. We can consider the applica-
tions

Rp → Rŝ

β 7→ ∂z proxγjgj(·,λ)

(
βj − γj∇jf(β)

)(
ej − γj∇2

j,Ŝ
f(β)

)
,

and

Rp → Rŝ×r

β 7→ ∂λ proxγjgj(·,λ)

(
βj − γj∇jf(β)

)
− γj∂z proxγjgj(·,λ)

(
βj − γj∇jf(β)

)
∇2
j,Ŝc

f(β)Ĵ Ŝc: ,

which are both differentiable at β̂ using Assumption 6.6 and (H4). The Taylor expansion
of the previous functions yields:

J (k,j)
j: = ∂z proxγjgj(·,λ)

(
ẑj

)(
ej − γj∇2

j,Ŝ
f(β̂)

)
J (k,j−1)

Ŝ:

+ ∂λ proxγjgj(·,λ)

(
ẑj

)
− γj∂z proxγjgj(·,λ)

(
ẑj

)
∇2
j,Ŝc

f(β̂)J (k,j−1)

Ŝc:

+ o(‖β(k,j−1) − β̂‖) .

Let j1, . . . , jŝ be the indices of the generalized support of β̂. When considering a full
epoch of coordinate descent, the Jacobian is obtained as the product of matrices of the
form

A>s =
(
e1 . . . es−1 vjs es+1 . . . eŝ

)
∈ Rŝ×ŝ ,

where vjs = ∂z proxγjsgjs

(
ẑjs

)(
es − γjs∇2

js,Ŝ
f(β̂)

)
∈ Rŝ. A full epoch can then be

written

J (k+1)

Ŝ:
= AŝAŝ−1 . . . A1︸ ︷︷ ︸

A

J (k)

Ŝ:
+b+ ε(k) ,

for a certain b ∈ Rŝ.
The spectral radius of A is strictly bounded by 1 (Klopfenstein et al., 2020, Lemma 8):
ρ(A) < 1. Assumptions 6.2 to 6.4 and 6.6 and the convergence of (β(k))k∈N toward β̂
ensure local linear convergence of (β(k))k∈N (Klopfenstein et al., 2020, Thm. 2). Hence,
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we can write the update for the Jacobian after an update of the coordinates from 1 to
p:

J (k+1)

Ŝ:
= AJ (k)

Ŝ:
+b+ ε(k) , (6.28)

with (ε(k))k∈N converging linearly to 0.

Recalling ρ(A) < 1, Lemma 6.18 and the last display yield our result using.

6.B Proof of the approximate gradient theorem

Theorem 6.13 (Bound on the error of approximate hypergradient). For λ ∈ Rr,
let β̂(λ) ∈ Rp be the exact solution of the inner Problem (6.1), and Ŝ its generalized
support. Suppose Assumptions 6.2, 6.3 and 6.6 hold. Let Λ be a neighborhood of λ, and
ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. Suppose hypotheses (H1) to (H4) from Theorem 6.9

are satisfied. In addition suppose

(H5) The application β 7→ ∇2f(β) is Lipschitz continuous.

(H6) The criterion β 7→ ∇C(β) is Lipschitz continuous.

(H7) Both optimization problems in Algorithm 6.5 are solved up to precision ε with sup-
port identification: ‖β(λ) − β̂(λ)‖ ≤ ε, A> is invertible, and ‖A−1>∇ŜC(β(λ))− v‖ ≤
ε.

Then the error on the approximate hypergradient h returned by Algorithm 6.5 is of the
order of magnitude of the error ε on β(λ) and v:

‖∇L(λ)− h‖ = O(ε) .

Proof

Overview of the proof. Our goal is to bound the error between the approximate
hypergradient h returned by Algorithm 6.5 and the true hypergradient ∇L(λ). Follow-
ing the analysis of Pedregosa (2016), two sources of approximation errors arise when
computing the hypergradient:

• Approximation errors from the inexact computation of β̂. Dropping the depend-
ency with respect to λ, we denote β the approximate solution and suppose the
problem is solved to precision ε with support identification (H7): βŜc = β̂Ŝc

‖βŜ − β̂Ŝ‖ ≤ ε .

• Approximation errors from the approximate resolution of the linear system, using
(H7) yields:

‖A−1>∇ŜC(β)− v‖ ≤ ε .
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The exact solution of the exact linear system v̂ satisfies:

v̂ = Â−1>∇ŜC(β̂) ,

with

A , Id|Ŝ|− ∂z proxγg(·,λ)

(
β − γ∇f(β)

)
Ŝ︸ ︷︷ ︸

,C

(
Id|Ŝ|−γ∇2

Ŝ,Ŝ
f(β)

)
︸ ︷︷ ︸

,D

,

Â , Id|Ŝ|− ∂z proxγg(·,λ)

(
β̂ − γ∇f(β̂)

)
Ŝ︸ ︷︷ ︸

,Ĉ

(
Id|Ŝ|−γ∇2

Ŝ,Ŝ
f(β̂)

)
︸ ︷︷ ︸

,D̂

.

• Using the last two points, the goal is to bound the difference between the ex-
act hypergradient and the approximate hypergradient, ‖∇L(λ)− h‖. Following
Algorithm 6.5, the exact hypergradient reads

∇L(λ) = B̂v̂ + Ĵ >Ŝc:∇ŜcC(β̂) ,

and similarly for the approximate versions:

h = Bv + J >
Ŝc:
∇ŜcC(β) ,

with

B , ∂λ proxγg(·,λ)

(
β − γ∇f(β)

)
Ŝ:
− γ∂z proxγg(·,λ)

(
β − γ∇f(β)

)
Ŝ
�
(
∇2
Ŝ,Ŝc

f(β)

)
Ĵ Ŝc:

B̂ , ∂λ proxγg(·,λ)

(
β̂ − γ∇f(β̂)

)
Ŝ:
− γ∂z proxγg(·,λ)

(
β̂ − γ∇f(β̂)

)
Ŝ
�
(
∇2
Ŝ,Ŝc

f(β̂)

)
Ĵ Ŝc: .

We can exploit these decompositions to bound the difference between the exact
hypergradient and the approximate hypergradient:

‖∇L(λ)− h‖ = ‖B̂v̂ −Bv + Ĵ >Ŝc:∇ŜcC(β̂)− Ĵ >Ŝc:∇ŜcC(β)‖
≤ ‖B̂v̂ −Bv‖+ ‖Ĵ >Ŝc:∇ŜcC(β̂)− Ĵ >Ŝc:∇ŜcC(β)‖
≤ ‖B̂v̂ −Bv̂ +Bv̂ −Bv‖+ ‖Ĵ >Ŝc:(∇ŜcC(β̂)−∇ŜcC(β))‖
≤ ‖v̂‖ · ‖B̂ −B‖+ ‖B‖ · ‖v̂ − v‖+ LC‖Ĵ

>
Ŝc:‖ · ‖β − β̂‖ . (6.29)

Bounding ‖v̂ − v‖ and ‖B̂ −B‖ in Equation (6.29) yields the desired result which is
bounding the difference between the exact hypergradient and the approximate hyper-
gradient ‖∇L(λ)− h‖.

Bound on ‖v̂ − v‖. We first prove that ‖A− Â‖ = O(ε). Let LH be the Lipschitz
constant of the application β 7→ ∇2f(β), then we have:

‖A− Â‖2 = ‖CD − ĈD̂‖2
≤ ‖CD − CD̂‖2 + ‖CD̂ − ĈD̂‖2
≤

∥∥C∥∥
2︸ ︷︷ ︸

≤1 (non-expansiveness)

‖D − D̂‖2︸ ︷︷ ︸
≤LH‖β−β̂‖ using (H5)

+ ‖D̂‖2︸ ︷︷ ︸
≤1

‖C − Ĉ‖2︸ ︷︷ ︸
O(‖β−β̂‖) using (H4)

≤ LH‖β − β̂‖+O(‖β − β̂‖)
= O(‖β − β̂‖) . (6.30)
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Let ṽ be the exact solution of the approximate system A>ṽ , ∇ŜC(β). The following
conditions are met:

• v̂ is the exact solution of the exact linear system and ṽ is the exact solution of the
approximate linear system

Â>v̂ , ∇ŜC(β̂)

A>ṽ , ∇ŜC(β) .

• One can control the difference between the exact matrix in the linear system Â
and the approximate matrix A.

‖A− Â‖2 ≤ δ‖β − β̂‖ ,

for a certain δ > 0 (Equation (6.30)).

• One can control the difference between the two right-hand side of the linear sys-
tems

‖∇ŜC(β)−∇ŜC(β̂)‖ ≤ LC‖β − β̂‖ ,

since β 7→ ∇C(β) is LC-Lipschitz continuous (H6).

• One can control the product of the perturbations

δ · ‖β − β̂‖ · ‖Â−1‖2 ≤ ρ < 1 .

Conditions are met to apply the result by Higham (2002, Thm 7.2), which leads to

‖ṽ − v̂‖ ≤ ε

1− ε‖Â−1‖δ

(
LC‖Â−1‖+ ‖v̂‖ · ‖Â−1‖δ

)
≤ ε

1− ρ
(
LC‖Â−1‖+ ‖v̂‖ · ‖Â−1‖δ

)
= O(ε) . (6.31)

The bound on ‖ṽ − v̂‖ finally yields a bound on the first quantity in Equation (6.3),
‖v − v̂‖:

‖v − v̂‖ = ‖v − ṽ + ṽ − v̂‖
≤ ‖v − ṽ‖+ ‖ṽ − v̂‖
≤ ‖A−1A(v − ṽ)‖+ ‖ṽ − v̂‖
≤ ‖A−1‖2 ×

∥∥∥A(v − ṽ)
∥∥∥︸ ︷︷ ︸

≤ε (H7)

+ ‖ṽ − v̂‖︸ ︷︷ ︸
O(ε) (Equation (6.31))

= O(ε) . (6.32)
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Bound on ‖B − B̂‖2. We now bound the second quantity in Equation (6.3) ‖B − B̂‖2:

‖B − B̂‖2 ≤ ‖∂λ proxγg(·,λ)(β − γ∇f(β))Ŝ: − ∂λ proxγg(·,λ)(β̂ − γ∇f(β̂))Ŝ:‖2
+ γ‖∂z proxγg(·,λ)(β̂ − γ∇f(β̂))Ŝ∇2

Ŝ,Ŝc
f(β̂)Ĵ Ŝc: (6.33)

− ∂z proxγg(·,λ)(β − γ∇f(β))Ŝ∇2
Ŝ,Ŝc

f(β)Ĵ Ŝc:‖2
≤ L1‖β − γ∇f(β)Ŝ: − β̂ + γ∇f(β̂)‖ using (H4)

+ L2‖β̂ − β‖ · ‖Ĵ Ŝc:‖ using (H4) and Assumption 6.6

= O(‖β̂ − β‖) . (6.34)

Plugging Equations (6.32) and (6.34) into Equation (6.3) yields the desired result:
‖∇L(λ)− h‖ = O(ε).



Conclusion and perspectives

«La chose la plus importante à
toute la vie est le choix du
métier : le hasard en dispose.»

In this thesis we first investigated some theoretical properties of coordinate descent.
We showed finite time model identification and local linear convergence. Relying on
these two properties, we proposed an Anderson accelerated version of cyclic proximal
coordinate descent: andersoncd. It has been implemented in the largest python brain
signal processing package, and is now the default solver for sparse signal estimation.

Then we explored a statistical approach to set the regularization parameter of Lasso-
type problems. We showed that partial smoothing preserves the statistical properties
of pivotal estimators, while making the optimization problem amenable to efficient
coordinate descent algorithms. We have extensively illustrated the interest of these
estimators on real M/EEG data: on visual and auditory tasks. However this approach
relies on unrealistic hypotheses and quantities unknown in practice.

Finally we investigated hyperparameter selection through the lens of bilevel optimiz-
ation. We extended usual first-order methods for bilevel optimization problems with
smooth inner problems, to nonsmooth inner problems. Leveraging sparsity, we were
able to speed-up hypergradient computations. This enabled efficient sparse linear mod-
els calibration with a large number of hyperparameters.

Over the last decades, convex optimization has lead to a wealth of algorithms to
solve single-level optimization problems, leaving the question of model selection of
optimization-based estimators to statisticians. We hope we convinced the reader of
the interest of solving directly bilevel optimization problems to moderate precision,
instead of single-level optimization problems to machine precision.

Even in the case of smooth inner problems, practical packages, such as scikit-learn
or glmnet, rely on zero-order methods for hyperparameter optimization, through grid-
search, random-search, or Bayesian techniques. First-order method packages exist
(hoag, Pedregosa 2016), but they still rely on other hyperparameters requiring manual
calibration: in practice, they do not lead to automated algorithms. In particular, they
are currently based on nested for-loops (Algorithm 6.6), which can lack of clear stop-
ping criterion to avoid solving the inner optimisation problems to unnecessary precision.
Some “online” algorithms have been proposed, but currently mostly rely on heuristics
(Baydin et al., 2017; MacKay et al., 2019; Vicol et al., 2021).

Note also that bilevel optimization is studied in game theory for almost a century under
the name of Stackelberg equilibrium (von Stackelberg, 1934), for which a wealth of
specific algorithms have been developed (Korpelevich, 1976; Rakhlin and Sridharan,
2013; Mescheder et al., 2017). Unifying bilevel optimization and Stackelberg game
theory (Sinha et al., 2017), with the design of principled, efficient, and practical “online”
algorithms appears a major area of research for the coming years. This would allow to
select the regularization parameter, without even solving exactly one inner problem.
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Titre : Sélection d’hyperparamètres pour l’apprentissage parcimonieux en grande dimension : application à la
neuroimagerie
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coordonnée, problèmes inverses, neuroimagerie

Résumé : Grâce à leur caractère non invasif et
leur excellente résolution temporelle, la magnéto-
et l’électroencéphalographie (M/EEG) sont devenues
des outils incontournables pour observer l’activité
cérébrale. La reconstruction des signaux cérébraux
à partir des enregistrements M/EEG peut être vue
comme un problème inverse de grande dimension
mal posé. Les estimateurs typiques des signaux
cérébraux se basent sur des problèmes d’optimisa-
tion difficiles à résoudre, composés de la somme d’un
terme d’attache aux données et d’un terme favorisant
la parcimonie. À cause du paramètre de régularisation
notoirement difficile à calibrer, les estimateurs basés
sur la parcimonie ne sont actuellement pas massi-
vement utilisés par les praticiens. L’objectif de cette
thèse est de fournir un moyen simple, rapide et au-
tomatisé de calibrer des modèles linéaires parcimo-
nieux.
Nous étudions d’abord quelques propriétés de la des-
cente par coordonnées : identification du modèle,
convergence linéaire locale, et accélération. En nous
appuyant sur les schémas d’extrapolation d’Ander-
son, nous proposons un moyen efficace d’accélérer la

descente par coordonnées en théorie et en pratique.
Nous explorons ensuite une approche statistique pour
calibrer le paramètre de régularisation des problèmes
de type Lasso. Il est possible de construire des esti-
mateurs pour lesquels le paramètre de régularisation
optimal ne dépend pas du niveau de bruit. Cepen-
dant, ces estimateurs nécessitent de résoudre des
problèmes d’optimisation ”non lisses + non lisses”.
Nous montrons que le lissage partiel préserve leurs
propriétés statistiques et nous proposons une ap-
plication aux problèmes de localisation de sources
M/EEG.
Enfin, nous étudions l’optimisation d’hyperpa-
ramètres, qui comprend notamment la validation
croisée. Cela nécessite de résoudre des problèmes
d’optimisation à deux niveaux avec des problèmes
internes non lisses. De tels problèmes sont résolus
de manière usuelle via des techniques d’ordre zéro,
telles que la recherche sur grille ou la recherche
aléatoire. Nous présentons une technique efficace
pour résoudre ces problèmes d’optimisation à deux
niveaux en utilisant des méthodes du premier ordre.

Title : Hyperparameter selection for high dimensional sparse learning: application to neuroimaging

Keywords : Hyperparameter selection and optimization, convex optimization, bilevel optimization, sparsity,
coordinate descent, inverse problem, neuroimaging

Abstract : Due to non-invasiveness and excellent
time resolution, magneto- and electroencephalogra-
phy (M/EEG) have emerged as tools of choice to mo-
nitor brain activity. Reconstructing brain signals from
M/EEG measurements can be cast as a high dimen-
sional ill-posed inverse problem. Typical estimators
of brain signals involve challenging optimization pro-
blems, composed of the sum of a data-fidelity term,
and a sparsity promoting term. Because of their noto-
riously hard to tune regularization hyperparameters,
sparsity-based estimators are currently not massively
used by practitioners. The goal of this thesis is to pro-
vide a simple, fast, and automatic way to calibrate
sparse linear models.
We first study some properties of coordinate des-
cent: model identification, local linear convergence,
and acceleration. Relying on Anderson extrapolation
schemes, we propose an effective way to speed up
coordinate descent in theory and practice.
We then explore a statistical approach to set the

regularization parameter of Lasso-type problems. A
closed-form formula can be derived for the optimal re-
gularization parameter of L1 penalized linear regres-
sions. Unfortunately, it relies on the true noise level,
unknown in practice. To remove this dependency, one
can resort to estimators for which the regularization
parameter does not depend on the noise level. Ho-
wever, they require to solve challenging ”nonsmooth
+ nonsmooth” optimization problems. We show that
partial smoothing preserves their statistical properties
and we propose an application to M/EEG source lo-
calization problems.
Finally we investigate hyperparameter optimization,
encompassing held-out or cross-validation hyperpa-
rameter selection. It requires tackling bilevel optimiza-
tion with nonsmooth inner problems. Such problems
are canonically solved using zeros order techniques,
such as grid-search or random-search. We present an
efficient technique to solve these challenging bilevel
optimization problems using first-order methods.
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