

Toward Understanding the Generalization of Flow Matching

Ouentin Bertrand

Joint work with A. Gagneux, S. Martin, M. Massias, and R. Emonet

(Slides mostly stolen from M. Massias. Many thanks to him!)

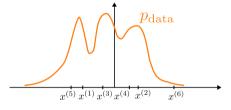
Outline

Short Intro to Generative Modelling & Neural ODEs

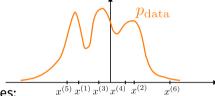
Flow Matching

Toward Generalization

Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}

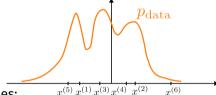


Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}



Sampler, Desired Properties:

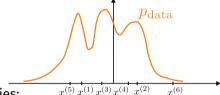
Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}



Sampler, Desired Properties:

Easy to train

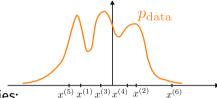
Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}



Sampler, Desired Properties:

- Easy to train
- Enforce fast sampling

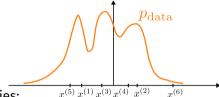
Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}



Sampler, Desired Properties:

- Easy to train
- Enforce fast sampling
- Generate high quality samples

Given $x^{(1)},\dots,x^{(n)}$ sampled from p_{data} , learn to sample from p_{data}

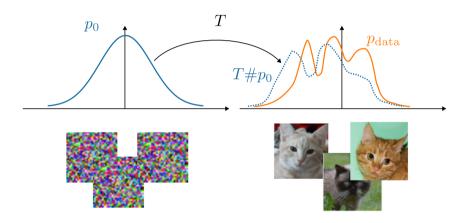


Sampler, Desired Properties:

- Easy to train
- Enforce fast sampling
- Generate high quality samples
- ullet Properly cover the diversity of $p_{
 m data}$

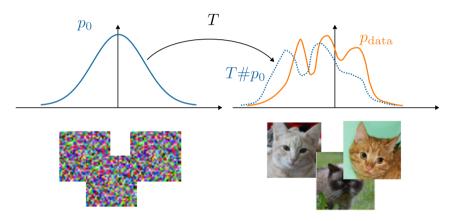
"Implicit" Generative Modelling

Map simple base distribution, p_0 , to p_{data} through a map T



"Implicit" Generative Modelling

Map simple base distribution, p_0 , to $p_{\rm data}$ through a map T



Technical wording *pushforward*: $T\#p_0$ is the distribution of T(x) when $x\sim p_0$

Want: $T\#p_0$ close to p_{data}

Want: $T\#p_0$ close to p_{data}

• Learn T: T_{θ}

Want: $T \# p_0$ close to p_{data}

- Learn T: T_{θ}
- ullet Idea: minimize some distance between $T_ heta\#p_0$ and $p_{
 m data}$

$$\theta^* = \operatorname*{argmin}_{\theta} \operatorname{Dist}(T_{\theta} \# p_0, p_{\text{data}})$$

Want: $T \# p_0$ close to p_{data}

- Learn $T: T_{\theta}$
- ullet Idea: minimize some distance between $T_ heta\#p_0$ and $p_{
 m data}$

$$\theta^* = \operatorname*{argmin}_{\theta} \operatorname{Dist}(T_{\theta} \# p_0, p_{\text{data}})$$

• "Equivalent" to maximum log-likelihood:

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^n \log \left(\underbrace{(\underline{T_{\theta} \# p_0})(x^{(i)})}_{:=p_1} \right)$$

Want: $T \# p_0$ close to p_{data}

- Learn $T: T_{\theta}$
- Idea: minimize some distance between $T_{\theta} \# p_0$ and p_{data}

$$\theta^* = \operatorname*{argmin}_{\theta} \operatorname{Dist}(T_{\theta} \# p_0, p_{\text{data}})$$

• "Equivalent" to maximum log-likelihood:

$$\theta^* = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log \left(\underbrace{(T_{\theta} \# p_0)}_{:=p_1} (x^{(i)}) \right)$$

• Question: how to compute $\log(T_{\theta} \# p_0(x^{(i)}))$? and $\nabla_{\theta} \log(T_{\theta} \# p_0(x^{(i)}))$?

$$\log T_{\theta} \# p_0(x) = \log p_0(T_{\theta}^{-1}(x)) + \log |\det J_{T_{\theta}^{-1}}(x)|$$

$$\log T_{\theta} \# p_0(x) = \log p_0(T_{\theta}^{-1}(x)) + \log |\det J_{T_{\theta}^{-1}}(x)|$$

Practical Downsides:

ullet $T_{ heta}$ must be invertible

$$\log T_{\theta} \# p_0(x) = \log p_0(T_{\theta}^{-1}(x)) + \log |\det J_{T_{\theta}^{-1}}(x)|$$

Practical Downsides:

- T_{θ} must be invertible
- ullet $T_{ heta}^{-1}$ should be easy to compute in order to evaluate the first right-hand side term

$$\log T_{\theta} \# p_0(x) = \log p_0(T_{\theta}^{-1}(x)) + \log |\det J_{T_{\theta}^{-1}}(x)|$$

Practical Downsides:

- T_{θ} must be invertible
- ullet $T_{ heta}^{-1}$ should be easy to compute in order to evaluate the first right-hand side term
- T_{θ}^{-1} must be differentiable

$$\log T_{\theta} \# p_0(x) = \log p_0(T_{\theta}^{-1}(x)) + \log |\det J_{T_{\theta}^{-1}}(x)|$$

Practical Downsides:

- T_{θ} must be invertible
- ullet $T_{ heta}^{-1}$ should be easy to compute in order to evaluate the first right-hand side term
- T_{θ}^{-1} must be differentiable
- ullet the (log) determinant of the Jacobian of $T_{ heta}^{-1}$ must not be too costly to compute

$$\log T_{\theta} \# p_0(x) = \log p_0(T_{\theta}^{-1}(x)) + \log |\det J_{T_{\theta}^{-1}}(x)|$$

Practical Downsides:

- T_{θ} must be invertible
- ullet $T_{ heta}^{-1}$ should be easy to compute in order to evaluate the first right-hand side term
- T_{θ}^{-1} must be differentiable
- ullet the (log) determinant of the Jacobian of $T_{ heta}^{-1}$ must not be too costly to compute

Normalizing Flows = neural architectures satisfying these requirements

How to ensure that T is invertible?

Idea:

- ullet Choose T as the solution of an Ordinary Differential Equation
- Learn the velocity field

$$\begin{cases} x(0) = x_0 \sim p_0 \\ \partial_t x(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$

The ODE mapping $T: x_0 \mapsto x(1)$ is invertible under mild assumptions

Outline

Short Intro to Generative Modelling & Neural ODEs

Flow Matching

Toward Generalization

We have:

- Source distribution $p_0 = \mathcal{N}(0, \mathrm{Id})$
- Target distribution $p_{\rm data}$ (e.g., images)

We have:

- Source distribution $p_0 = \mathcal{N}(0, \mathrm{Id})$
- Target distribution $p_{\rm data}$ (e.g., images)

Goal:

ullet Generate new samples from $p_{
m data}$

We have:

- Source distribution $p_0 = \mathcal{N}(0, \mathrm{Id})$
- Target distribution p_{data} (e.g., images)

Goal:

ullet Generate new samples from $p_{
m data}$

How?

Solving

$$\begin{cases} x(0) = x_0 \sim p_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$

• Such that solution $x(1) \sim p_{\text{data}}$

We have:

- Source distribution $p_0 = \mathcal{N}(0, \mathrm{Id})$
- Target distribution p_{data} (e.g., images)

Goal:

ullet Generate new samples from $p_{
m data}$

How?

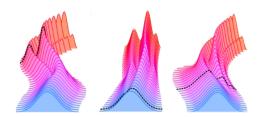
Solving

$$\begin{cases} x(0) = x_0 \sim p_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$

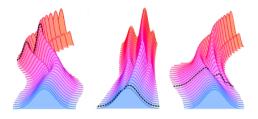
• Such that solution $x(1) \sim p_{\text{data}}$

How to learn a "good" velocity field u?

$$\begin{cases} x(0) = x_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$



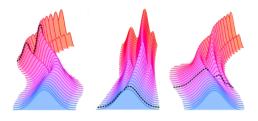
$$\begin{cases} x(0) = x_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$



- ODE defines probability path $(p_t)_{t\in[0,1]}$ = laws of the solution x(t) when $x(0)\sim p_0$
- Requirements on p_t

$$\hookrightarrow p_0 = p_0$$
 and $p_1 = p_{\mathrm{data}}$

$$\begin{cases} x(0) = x_0 \\ \dot{x}(t) = u(x(t), t) \quad \forall t \in [0, 1] \end{cases}$$



- ullet ODE defines probability path $(p_t)_{t\in[0,1]}$ = laws of the solution x(t) when $x(0)\sim p_0$
- Requirements on p_t

$$\hookrightarrow p_0 = p_0$$
 and $p_1 = p_{\text{data}}$

u must drive a progressive transformation of p_0 into $p_{
m data}$

$$\begin{bmatrix} x(0) = x_0 \\ \partial_t x(t) = u(x(t), t) & \forall t \in [0, 1] \end{bmatrix}$$

$$x(0) = x_0$$

$$\partial_t x(t) = u(x(t), t) \quad \forall t \in [0, 1]$$

Key objects:

- the velocity field $u: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$
- the flow $f^u:\mathbb{R}^d \times [0,1] \to \mathbb{R}^d$: $f^u(x,t)$ = solution at time t to the initial value problem with initial condition x(0)=x
- the probability path $(p_t)_{t\in[0,1]}$ = the distributions of $f^u(x,t)$ when $x\sim p_0$ $(p_t=f^u(\cdot,t)\#p_0)$

$$x(0) = x_0$$

$$\partial_t x(t) = u(x(t), t) \quad \forall t \in [0, 1]$$

Key objects:

- the velocity field $u: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$
- the flow $f^u:\mathbb{R}^d \times [0,1] \to \mathbb{R}^d$: $f^u(x,t)$ = solution at time t to the initial value problem with initial condition x(0)=x
- the probability path $(p_t)_{t\in[0,1]}$ = the distributions of $f^u(x,t)$ when $x\sim p_0$ $(p_t=f^u(\cdot,t)\#p_0)$

Linked through the continuity equation

$$\partial_t p_t + \operatorname{div}(u_t p_t) = 0$$

$$x(0) = x_0$$

$$\partial_t x(t) = u(x(t), t) \quad \forall t \in [0, 1]$$

Key objects:

- the velocity field $u: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$
- the flow $f^u: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$: $f^u(x,t)$ = solution at time t to the initial value problem with initial condition x(0) = x
- the probability path $(p_t)_{t\in[0,1]}$ = the distributions of $f^u(x,t)$ when $x\sim p_0$ $(p_t=f^u(\cdot,t)\#p_0)$

Linked through the continuity equation

$$\partial_t p_t + \operatorname{div}(u_t p_t) = 0$$

Finding a good velocity u " \equiv " Finding a good proba. path p_t

ullet Can you find a good velocity field u?

• Can you find a good velocity field *u*?

 \hookrightarrow Too hard

- ullet Can you find a good velocity field u?
 - \hookrightarrow Too hard
- Can you find a good probability path p_t ?

- ullet Can you find a good velocity field u?
 - \hookrightarrow Too hard
- Can you find a good probability path p_t ?
 - \hookrightarrow Also too hard

- Can you find a good velocity field *u*?
 - \hookrightarrow Too hard
- Can you find a good probability path p_t ?
 - \hookrightarrow Also too hard
- Idea: can you find a good conditional probability path?

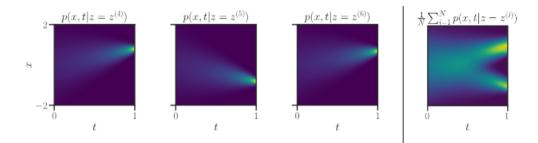
- Can you find a good velocity field *u*?
 - \hookrightarrow Too hard
- Can you find a good probability path p_t ?
 - \hookrightarrow Also too hard
- Idea: can you find a good conditional probability path?
 - \hookrightarrow Yes!

- Can you find a good velocity field *u*?
 - \hookrightarrow Too hard
- Can you find a good probability path p_t ?
 - \hookrightarrow Also too hard
- **Idea**: can you find a good *conditional* probability path?
 - \hookrightarrow Yes!

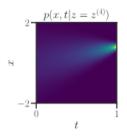
e.g.,

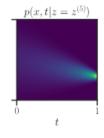
$$p(x|x_1,t) = \mathcal{N}(tx_1,(1-t)^2\mathrm{Id})(x)$$

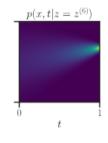
Link between $p(\cdot|z=x_1,t)$ and $p(\cdot|t)$

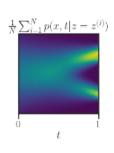


Link between $p(\cdot|z=x_1,t)$ and $p(\cdot|t)$









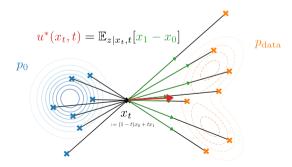
One can check that:

- $p(\cdot|t=0) = p_0$
- $p(\cdot|t=1) = p_{\text{data}}$

Link between $u^{\rm cond}$ and u

Notation:

- Conditioning variable $z=x_1\sim p_{\rm data}$
- *Conditional* probability path $p(\cdot|z=x_1,t)=\mathcal{N}(tx_1,(1-t)^2\mathrm{Id})$
- Associated conditional velocity: $u^{\mathrm{cond}}(x,z=x_1,t)=rac{x_1-x}{1-t}$



The flow matching loss

We have our target, valid velocity:

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[u^{\text{cond}}(x,z,t)]$$

The flow matching loss

We have our target, valid velocity:

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[u^{\text{cond}}(x,z,t)]$$

We just need to approximate it with a neural net $u_{\theta}: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$:

$$\min_{\theta} \left\{ \mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{\substack{t \sim \mathcal{U}([0,1]) \\ x_t \sim p(\cdot|t)}} \|u_{\theta}(x_t, t) - u^{\star}(x_t, t)\|^2 \right\}$$

15

The flow matching loss

We have our target, valid velocity:

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t}[u^{\text{cond}}(x,z,t)]$$

We just need to approximate it with a neural net $u_{\theta}: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$:

$$\min_{\theta} \left\{ \mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{\substack{t \sim \mathcal{U}([0,1]) \\ x_t \sim p(\cdot|t)}} \|u_{\theta}(x_t, t) - u^{\star}(x_t, t)\|^2 \right\}$$

We are almost there

15

The conditional flow matching loss

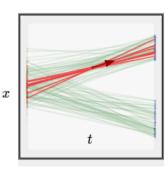
Ideal loss:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{\substack{t \sim \mathcal{U}([0,1]) \\ x_t \sim p(\cdot|t)}} \|u_{\theta}(x_t, t) - u^{\star}(x_t, t)\|^2$$

Theorem 2: (Lipman, Liu, Albergo 2023) Up to a constant, $\mathcal{L}_{\mathrm{FM}}$ is equal to

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \|u_{\theta}(x_t, t) - \underbrace{u^{\text{cond}}(x_t, z = x_1, t)}_{=x_1 - x_0} \|^2$$

where
$$x_t := (1 - t)x_0 + tx_1$$



Minimizing $\mathcal{L}_{\mathrm{CFM}}$

To minimize

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2$$

$$(x_t := (1 - t)x_0 + tx_1)$$

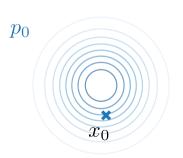
- sample $x_0 \sim p_0$: easy!
- sample $t \sim \mathcal{U}([0,1])!$ easy!
- sample $x_1 \sim p_{\mathrm{data}}$? easy if we replace by $x_1 \sim \hat{p}_{\mathrm{data}} := \frac{1}{n} \sum_{i=1}^n \delta_{x^{(i)}}$

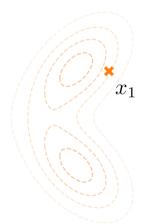
17

$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$

 $p_{\rm data}$

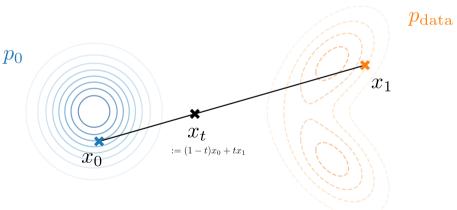
$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$



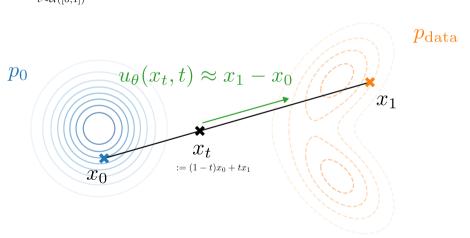


 $p_{\rm data}$

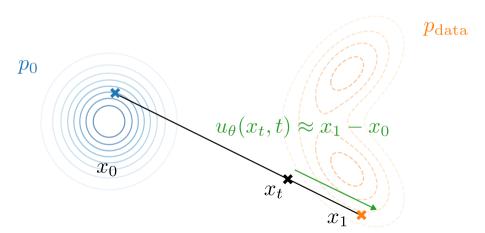
$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$



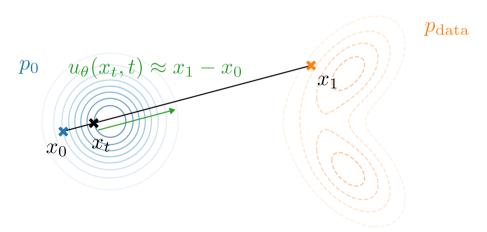
$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$



$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$



$$\min_{\theta} \mathbb{E}_{\substack{x_0 \sim p_0 \\ x_1 \sim p_{\text{data}} \\ t \sim \mathcal{U}([0,1])}} \left[\|u_{\theta}(x_t, t) - u^{\text{cond}}(x_t, z = x_1, t)\|^2 \right] \qquad (x_t := (1 - t)x_0 + tx_1)$$



Outline

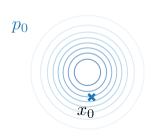
Short Intro to Generative Modelling & Neural ODEs

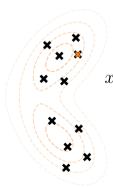
Flow Matching

Toward Generalization

A small caveat

But in practice we replace p_{data} by \hat{p}_{data}





 \hat{p}_{data}

$$x_1 \in \{x^{(1)}, \dots, x^{(n)}\}$$

Remember the ideal "unavailable" velocity?

$$u^{\star}(x,t) = \mathbb{E}_{z|x,t} u^{\text{cond}}(x,z,t)$$

Prop: If p_{data} is replaced by $\hat{p}_{\text{data}} := \frac{1}{n} \sum_{i=1}^{n} \delta_{x^{(i)}}$, the optimal velocity has a closed-form:

$$\hat{u}^{\star}(x,t) = \sum_{i=1}^{n} \lambda_{i}(x,t) \frac{x^{(i)} - x}{1 - t}$$

with
$$\lambda(x,t) = \operatorname{softmax}((-\frac{1}{2(1-t)^2}\|x - tx^{(i')}\|^2)_{i'=1,\dots,n}) \in \mathbb{R}^n$$

 \hat{u}^{\star} is now a finite sum!

What can we observe for \hat{u}^{\star} as $t \to 1$?

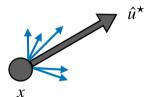
21

Flow matching should not work

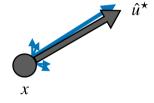
- because in practice we use \hat{p}_{data} instead of p_{data} , the minimizer of \mathcal{L}_{CFM} is available in closed-form
- this closed-form $\hat{u}^\star(x,t)$ blows up for $t \to 1$ if $x \notin \{x^{(1)},\dots,x^{(n)}\}$
- it can only generate training points!

So why does flow matching generalize?

$$\hat{u}^{\star}(x,t) = \sum_{i=1}^{n} p\left(z = x^{(i)} | x, t\right) u^{\text{cond}}\left(x, t, z = x^{(i)}\right)$$

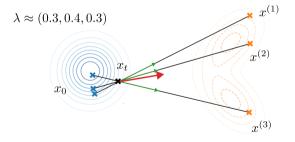


Common belief STOCHASTICITY

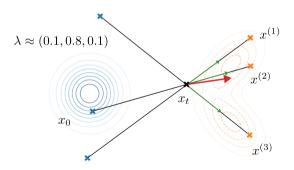


What really happens NON-STOCHASTICITY

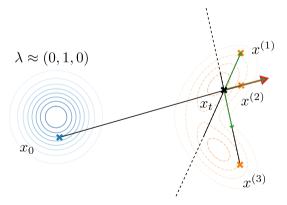
$$\hat{u}^{\star}(x_t, t) = \sum_{i=1}^{3} \lambda_i(x_t, t) \frac{x^{(i)} - x_t}{1 - t}$$



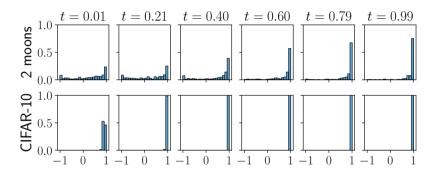
$$\hat{u}^{\star}(x_t, t) = \sum_{i=1}^{3} \lambda_i(x_t, t) \frac{x^{(i)} - x_t}{1 - t}$$



$$\hat{u}^{\star}(x_t, t) = \sum_{i=1}^{3} \lambda_i(x_t, t) \frac{x^{(i)} - x_t}{1 - t}$$

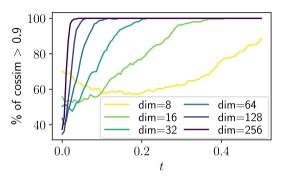


Non stochasticity for real data



histograms of cosine similarities between $\hat{u}^\star((1-t)x_0+tx_1,t)$ and $u^{\rm cond}((1-t)x_0+tx_1,z=x_1,t)=x_1-x_0$

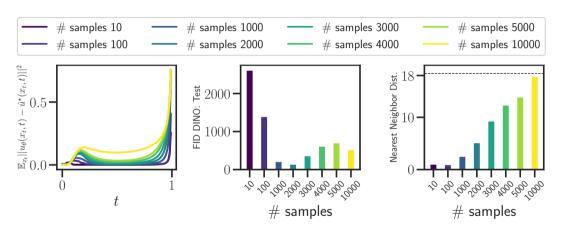
Issues of intuitions from small dimension



Alignment of \hat{u}^{\star} and $u^{\rm cond}$ over time for varying image dimensions d on Imagenette

Stochasticity only occurs for very small \boldsymbol{t} as dimension increases

Flow Matching Works Because It Fails



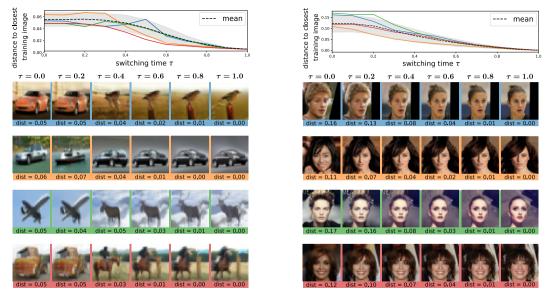
- Generalization when failure to approximate the "optimal" velocity
- u_{θ} fails to learn \hat{u}^{\star} for both $t \approx 0.2$ and $t \approx 0.9$

Which t matters most?

From a good trained u_{θ} , we build a *hybrid* model (fixed $\tau \in [0,1]$):

- on $[0,\tau]$: follow \hat{u}^{\star}
- on $[\tau, 1]$: follow u_{θ}

- $\tau=1$ means completely following \hat{u}^{\star} (no generalization)
- $\tau = 0$ means completely following u_{θ} (good generalization)



generalization arises early!

Refuting the stochasticity argument: regressing against \hat{u}^{\star}

From
$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E} \underset{\substack{x_0 \sim p_0 \\ x_1 \sim \hat{p}_{\text{data}} \\ t \sim \mathcal{U}([0,1])}}{\|u_{\theta}(x_t,t) - (x_1 - x_0)\|^2}$$
 to
$$\mathcal{L}_{\text{EFM}}(\theta) = \mathbb{E} \underset{\substack{x_0 \sim p_0 \\ x_1 \sim \hat{p}_{\text{data}} \\ t \sim \mathcal{U}([0,1])}}{\|u_{\theta}(x_t,t) - \hat{u}^{\star}(x_t,t)\|^2}$$

$$= \mathbb{E} \text{FM - 128} \quad \mathbb{E} \text{FM - 256} \quad \mathbb{E} \text{FM - 256} \quad \mathbb{E} \text{FM - 1000} \quad \mathbb{E} \text{FM - 256} \quad \mathbb{E} \text{FM - 2$$

Learning with a non-stochastic target does not degrade performance

Summary

- by design, the true velocity in flow matching is available in closed-form
- flow matching should not create new images, yet it does
- stochasticity is definitely not the reason for it
- small and large times appear to matter most
- failure of u_{θ} to learn \hat{u}^{\star} for small t is critical

On the Closed-Form of Flow Matching: Generalization Does Not Arise from Target Stochasticity, Bertrand, Gagneux, Massias & Emonet, preprint 2025

Detour: how to measure generalization

Fréchet Inception Distance (FID) to compare generated images to true (train or test) images:

- compute embeddings for both groups (Inception network)
- approximate each distrib of embedding by Gaussians
- use closed-form OT formula for Gaussians $\|\mu_1 \mu_2\|^2 + \operatorname{tr}(\Sigma_1 + \Sigma_2 2(\Sigma_1\Sigma_2)^{1/2})$

Detour: how to measure generalization

Fréchet Inception Distance (FID) to compare generated images to true (train or test) images:

- compute embeddings for both groups (Inception network)
- approximate each distrib of embedding by Gaussians
- use closed-form OT formula for Gaussians $\|\mu_1-\mu_2\|^2+\operatorname{tr}(\Sigma_1+\Sigma_2-2(\Sigma_1\Sigma_2)^{1/2})$
- it's a wonder that people use it:
 - it has (hidden) dependence on number of samples used
 - empirically, a model that generates only train images has SOTA test FID
- as complement, we use min distance of generated image to training data